On Star Chromatic Number of $\mathrm{P}_{3}{ }^{(n)}$

N. Ramya*
Department of Mathematics, Bharath University, Selaiyur, Chennai, Tamil Nadu, India;
nramyas@yahoo.com

Abstract

We illustrate a coloring and star coloring of $\mathrm{P}_{3}{ }^{(\mathrm{n})}$, for every $\mathrm{n} \geq 3$, and also distinguish the relation between them.

Keywords: Coloring, Star Coloring, $\mathrm{P}_{3}{ }^{(\mathrm{n})}$ Path Graph

1. Introduction

In 1973Grunbaum introduced star coloring. Let G denote a graph with vertex set v ;we shall assume that G contains 1 or 2 circuits(i.e. loops or multiple edges).A coloring of G is a partition $V=V_{1} U V_{2} U \ldots . . U V_{k}$ of the vertices of G into k pairwise disjoint sets(called colors)so that adjacent vertices are in different sets(have different colors).

A star coloring of a graph is a proper coloring such that no path on 4 vertices is 2 -colored ${ }^{1,2}$.

Recall that a proper coloring of a graph is an assignment of colors to the vertices of the graph such that adjacent vertices are assigned different colors.

2. Main Results

Result 1: A graph $P_{3}{ }^{(n)} n \geq 3$ has chromatic number is always 2.

We can give the coloring by following ways:

1. $\mathrm{f}(\mathrm{u})=1$.
2. $\mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{x}_{1}\right)=2, \mathrm{f}\left(\mathrm{w}_{1}\right)=2$.
3. $\mathrm{f}\left(\mathrm{v}_{2}\right)=1, \mathrm{f}\left(\mathrm{x}_{2}\right)=1, \mathrm{f}\left(\mathrm{w}_{2}\right)=1$.

Fig

Example: If $\mathrm{n}=3$, then the graph $\mathrm{p}_{3}{ }^{(3)}$ has chromatic number as follows.

Thus the chromatic number $\mathrm{P}_{3}{ }^{(3)}$ is 2 .
Result 2: A graph $\mathrm{P}_{3}{ }^{(\mathrm{n})} \mathrm{n} \geq 3$, has star chromatic number is 3^{3}.

We can define the vertex set from the following figure.

[^0]Star coloring has to be given,

1. $\mathrm{f}(\mathrm{u})=1$.
2. $\mathrm{f}\left(\mathrm{v}_{1}\right)=2, \mathrm{f}\left(\mathrm{w}_{1}\right)=2, \mathrm{f}\left(\mathrm{x}_{1}\right)=2, \mathrm{f}\left(\mathrm{y}_{1}\right)=2$.
3. $f\left(v_{2}\right)=3, f\left(w_{2}\right)=3, f\left(x_{2}\right)=3, f\left(y_{2}\right)=3$.

Example: If $\mathrm{n}=4$, then graph $\mathrm{P}_{3}{ }^{(4)}$ has star chromatic number as follows:

Hence $\psi_{s}\left(\mathrm{P}_{3}{ }^{(4)}\right)=3$.
If the copies will be increases, then we can give the coloring by the same way.

3. Conclusion

Hence we conclude that this type of graph, the chromatic number $\psi(\mathrm{G})$ is less than star chromatic number $\psi_{s}(\mathrm{G})$.

It is of interest to extend this coloring for directed graphs.

4. References

1. G.Fertin, A.Raspand, and B.Reed "star coloring of graph", J.Graph theory 47(3),163-182,2004.
2. A.Lyons "acyclic and star coloring of joints of graphs and an algorithm for co-graphs(TW,PP,199-202,2009).
3. Selvaraju.P and NirmalaGnanam Priscilla.B(2007), "on even and odd graceful labeling; Decompositions of complete graphs and complete Bipartite graphs into Isomorphic super sub-division graphs", J.Pure\&appl.physics.vol.19,no.4 PP 299-309.

[^0]: *Author for correspondence

