
Abstract
In this paper, we use software architecture style based on event-driven and message passing communication method and
determine a framework for interaction among practicable processes on Operating System (OS). In the proposed method,
the required data are sent to the process or other processes in a standard message frame and with determined structure
to the OS, then, the OS distributes the received message considering its recipient processes in the system, rather a process
communicates directly with other specific process. The major features of the proposed method include the synchronization
among the processes, the simplicity of implementation, easy extensibility, remote access which finally can improve the
interaction between the OS and processes. Along with producing the systems based on an integrated frame, we obtain a
determined standard in Inter Process Communication (IPC) by mediating an OS.

*Author for correspondence

Indian Journal of Science and Technology, Vol 7(6), 839–847, June 2014
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A New Approach for Inter Process Communication
with Hybrid of Message Passing Mechanism

and Event based Software Architecture
Farhad Soleimanian Gharehchopogh*, Esmail Amini and Isa Maleki

Computer Engineering Department, Science and Research Branch, Islamic Azad University, West Azerbaijan, Iran;
bonab.farhad@gmail.com, es.amini56@gmail.com, maleki.misa@gmail.com

1. Introduction

The software architecture style based on event is one of
the most successful and most used available architecture
in designing extensible systems. In this architecture style,
summoning the operation is separated from its opera-
tion as the applier of a service is independent from the
provider and mainly doesn’t know about it1. Even it is
possible that in a distributed system, these two elements
are operating in two separated processor. We use com-
munication processes as the sub-group of independent
component. In this architecture style, the general princi-
ples and rules of implicit innovation Event-Based systems
are almost dominated. In this style, each element has a
series of operations and events. The elements acted in a
way to assign some of their elements to some of the events
related to the system other elements in order to do opera-
tion as an event occurred2. Communication processes

style is based on implicit summoning which means that
a software element creates an event rather it summons a
system directly. Then, it generally distributes the event in
the total system2. So, by producing an event implicitly, a
software elements cause to operate some operations. It is
as the element can’t determine which processes may be
operated. In this architectural style, the main emphasis is
based on message passing among software elements. This
feature causes that concepts such as event occurrence and
event general distribution take a specific meaning3. Event
occurrence means the message delivery to a software sys-
tem. For general distribution of its occurrence, it can be
distributed by a message communication protocol among
other elements.

In this paper, the processes are implemented in a way
that firstly it arranges a message containing the neces-
sary data to communicate with the other processes in a
message frame based on XML structure and then sends

Keywords: Event-driven, IPC, Message Passing, OS, Software Architecture

A New Approach for Inter Process Communication with Hybrid of Message Passing Mechanism and Event based Software
Architecture

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org840

it to available Event Bus in the OS core instead of a pro-
cess wants to make relation directly with the other. Then,
based on determined security decisions, the OS gener-
ally distributes the received message in the system and
among the processes. The available Event Bus in the OS
is acted based on event processing as the messages which
exchange between OS and processes have a standard and
defined structure in total system. As soon as the mes-
sage enters to the Event Bus, the OS stimulates an event
similar to the received message and generally distributes
it. Due to the above mentioned structure for the OS,
the processes must be in a way to adjust with the above
structure and make relation with it. To do so, we design
a standard connector for the system processes as when a
program is changed to the process and its specific data
recorded in the available processes tables in the OS, the
OS provides the mentioned connector for each process.
It includes an event processor and necessary buffers for
sent and received messages to the process. The connec-
tor provides the ability of making relationship with the
external environment without its affection on the internal
structure.

In the proposed method, it is used the structure based
on XML which involve high flexibility and processing
rate. In message passing procedure among them, a pro-
cess may reply to the received message. Consequently,
it regulates the reply in a standard structure and almost
similar to the sent messages structure and then sends it to
the determined module. It causes more integrity between
the processes and request and responses structure. The
main features of the proposed method include the sim-
plicity of implementation, easy expandability, remote
access and the lack of necessity of synchronization among
processes. By observing and improving detailed points in
the proposed method, it can be reached to an acceptable
efficiency in making relationship between the processes
and the OS3,4.

We organize the general structure of this paper as
follow: In section 2, it is reviewed IPC mechanisms. In
section 3, it is reviewed previous strategies about IPC. In
section 4, we review the proposed strategies of IPC and
its general structure. We also point out to its internal and
external structure and review the internal modules, sepa-
rately. In section 5, we introduce the proposed method
and finally in section 6, it is introduced the conclusion and
also future works and studies about IPC and specific the
proposed method. We also apply Enterprise Architect7.0
to model the proposed method and provide UML charts.

2. Interprocess Communication
(IPC)

In the OS, there are a lot of issues and processes which
related to each other. In relation viewpoint, the avail-
able processes in the OS are classified in two groups of
independent processes and cooperator processes. The
processes, in which the following proportions are valid
about it, will be an independent process3,5:

• Its beginning and ending will be possible every time
and without affection on the other processes.

• The output of the process will be specified.
• If the process input is similar in different operations,

the output will be, too.
• There is no available shared status.

If two processes don’t have one of the above mentioned
proportions, it is concluded that these two processes are in
cooperation and need of each other data. As the processes
didn’t have access to the data space and their addresses
due to some security reasons, so, they cooperated and
interacted with each other to meet each other needs5,6.
The process of making relationships is so-called IPC and
it is provided different strategies for it so far which discuss
about it later in this paper. Figure 1 indicates the concept
of IPC.

3. The Previous Strategies about
IPC

There are different mechanisms to make relationships
among the processes which have advantages and disad-
vantages.

File System IPC method is a mechanism in which
the process writes the source of data in a file and then
reads the data target from the file. It has a simultaneous
problem but it can be removed by locking. Also, by using
a specific type of files, the using method can be facili-
tated5,7. The other applied mechanism is Message-Based
IPC. In this method, the process puts the data source in a

Figure 1. The Relationship between Process A and Process B.

Farhad Soleimanian Gharehchopogh, Esmail Amini and Isa Maleki

Indian Journal of Science and Technology 841Vol 7 (6) | June 2014 | www.indjst.org

specific frame in a message and sends it to the OS. Then,
the OS places the message in the array of input messages
of target process. Finally, the target process reads the mes-
sage from input array. In this method, the message sender
can be either waited the receiver reply or not8. The other
applied method is procedure call IPC method which is
used sub-procedures to make relationship among the
processes. The data are sent through parameters and the
reply reaches to the recipient as a returning value. The
process usually waits for sub-procedures reply and in fact,
it is blocked. As the target sub-procedures put in a differ-
ent address space, the complexity is increased8,9. Shared
Memory IPC is another mechanism to make relation-
ships among the processes. In this method, the different
processes share a general part of memory among them-
selves. This memory can be either physical or available
virtual. The relationship among these processes is pro-
vided through this Shared Memory reading and writing.
It is necessary to use mechanisms to remove the simul-
taneous problem and/or apply semaphore10,11. The issues
which must be considered important about IPC and
most available methods have deficiencies about it include
the simultaneous problem among the processes to the
variable or the Shared Memory during access time, the
blocking of source and target processes after message
sending to receive the reply from the other party and
also the addressing method in IPC. Finding an optimal
method to solve these problems will help us to reach a
mechanism with high efficiency to provide secure and
fast relationships among the processes11.

4. Proposed Methods
Due to our proposed architecture about the OS and
processes function, in this paper, we want to divide the
system architecture to two separated parts with different
functions. The necessity of providing two separated parts
in the system indicates that the nature of expandable sys-
tems involve parts in which handle general and common
tasks among all system parts and in fact performs the
management tasks of total system. The structure of these
parts in the system is almost constant and its goal is to
manage variable components in the system. It is so called
system core. Beside the core, there are other parts in the
system with variable availability and can act according to
different goals in the system. The activity of these parts
is done under the control of system core so the elements
placed in this part are so called module.

We consider the OS as the central core which in fact
handles the management tasks in the system and the pro-
cesses as modules which do their tasks under the control
of the available processes in the system. The OS handles
the main tasks as the system core as it knows about the
available status of the processes and identifies and con-
trols them. Consequently, by designing an Event Bus
which is capable of making relationship with the available
process table, it can be provide relationship and interact
among different processes. The processes are also can be
structured as the separated parts of the OS involved a con-
nector besides the independency feature which is capable
of interaction with each other through the available Event
Bus in the system core12,13. Figure 2 indicates the system
general frame and its relationship.

As it can be seen in Figure 2, the space of the OS is
divided to two separated parts of Kernel Space and User
Space. The Kernel Space plays its role as a central core in
our proposed system and includes two parts: Process Table
and EBCP. The Process Table can be used as a reference
for Event Bus to access and identify the processes. Event
Bus or EBCP is acted as an intelligent pipeline in the sys-
tem and is accessible in the total system and all processes.
EBCP as a general connector is capable of making rela-
tionship among the system different parts and processes.
It processes the messages based on standard structure
and then identifies it by using Process Table of the system
processes and/or target processes. Then, it stimulates the
message event in the total system and distributes it.

In the other part of the OS, there is User Space which
includes the available and in process processes of the
system which can be structurally different14. However,
each one must have a standard and defined connector to
make relationship with the internal structure and other
processes. The Event Engine can be produced by the pro-
cess itself but it is better to produce by the OS due to its

Figure 2. The General Structure of the System and its
Interaction with Different Parts to make Relationship among
the Processes.

A New Approach for Inter Process Communication with Hybrid of Message Passing Mechanism and Event based Software
Architecture

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org842

Based on determined policies for Event Processor Engine
module, it sends the available messages in input buffer to
all or some of system processes. This module has a behav-
ior called Raise Event which handles message distribution
in the system17. EBCP module uses process table as a ref-
erence to access and identify the processes.

In this step, it must be considered a basic and impor-
tant problem in efficiency and security of system and
that is the distribution method of sent message from a
process17,18. When a process makes a decision to com-
municate with other process, it must produce a message
involved necessary data in a pre-defined structural frame
and then sends it through its connector to EBCP. After
message entry to EBCP, it must be determined the system
policy about how to deal with messages to provide the
system security and efficiency in the best possible way19.
In this case, the OS can be acted in two ways:

i. the OS can act in a way to generally distribute the
received message of a process in total system and
sends it to all available processes in the system. In this
case, there is no need to add additional data field to
process table. All available processes receive the sent
message system from a process. The advantage of
this case is that the message structure is simpler and
decreases system complexity. There is also no need
to add additional data field in process table. It can
be noted to the system security decrease as the dis-
advantage of this case. Because, sent message become
available for all system processes via a process and this
may not be desirable for the source process. Although,
can be used coding methods to find a method of data

specified internal structure. Then, during the process
entry to the memory, it delivers to the process. The Event
Engine connector acts as an interface between the process
and external environment. It receives and sends the mes-
sage using method based on message and XML structure.
The Event Engine connector of each process has mutual
interaction with the available EBCP in the core of OS.
In fact, each action or reaction from system processes
and/or core must be done through EBCP. As a process
decides to make relationship with another process, firstly,
it produces a message which includes receiver and sender
characteristics as well as the message major data in a
structural frame based on XML through its specific Event
Engine. Then, the Event Engine process sends the mes-
sage to EBCP. After receiving message, EBCP processes
it and identifies the target processes using Process Table
and finally by using an event, distributes the message
among the target processes, simultaneously. The target
processes produce a message with similar structure and
send to the source process if replying to the message is
required15,16.

4.1 The Structure of the OS for the
Processes

In our proposed strategy, the OS must have a series of dis-
tinct parts to control independent processes and manage
them during the availability of the process in the mem-
ory. As some of these controlling features are essential for
accurate function of processes and also for the OS as the
manager of processes, so, these strategies are provided
in the OS before16. So, we use these controlling features
as a key to reach the processes in our proposed strategy.
The OS uses process table to control and manage the
processes. Consequently, it is used Process Table as a ref-
erence to access the available processes in the system and
making relationship between the source and target pro-
cesses14,16. The available EBCP in the OS which handles
the relationships among the processes is so called EBCP.
Its internal structure is indicated in Figure 3.

As it can be seen Figure 3, the Process A produces a
message based on XML structure and sends it to EBCP of
the OS to make relationship with A, B and C processes.
The sent messages to EBCP are firstly stored in input buf-
fer. It causes that as the received and sent messages of
processes is increased, EBCP can manage them better.
The available messages in input buffer are processed as
first in first out by Event Processor Engine, respectively.

Figure 3. The Internal Structure of EBCP and the
Relationship of Internal and External components with each
other.

Farhad Soleimanian Gharehchopogh, Esmail Amini and Isa Maleki

Indian Journal of Science and Technology 843Vol 7 (6) | June 2014 | www.indjst.org

access controlling. The other method of this case is the
additional load which applies on input buffers of
system processes and resulted in receiving the sent
messages of system other processes. It is as most mes-
sages may not be useful for the system and practically
consider as spam19,20.

ii. in another case, the OS can act in a way in which as a
new process enters the system, the OS must provide
circumstances between in process and newly-entered
processes. It causes that the processes which related
and interacted, can find each other. Then, the newly-
entered process identifies the authorized processes of
interaction and provides their data for the OS. Then,
the OS records the received data as well as other data
of newly-entered process in the process table. In fact,
it is required to save additional data in the processes
table20. Figure 4 indicates the stages of operation as
sequence diagram.

Due to Figure 4, as a process enters a system, the
OS records the process in the process table after assign-
ing variables and required space to the process as well as
specific Event Engine. Then, the OS sends a message con-
taining an ID of newly-entered process to each available
process in the system. As soon as the available processes
in the system receives the message from the OS, it sends
a cooperation request message to the newly-entered pro-
cess (if needed) which includes a key that only friend
and cooperation processes can identify and process. The
newly-entered process reviews the received key from
other process after receiving cooperation request from

other processes of the system. If the key is accurate, the
considered process will be adopted as the cooperation
process and asks for the OS to record the noted process
as the cooperation process in its specific entry in the pro-
cesses table21.

It can be noted to the full security of relations among
the processes as an advantage of it as only allowed pro-
cesses which are validated previously receives the sent
message. In this case, there is no additional load on the
input buffer of the processes because the characteristics
of related processes in the process table and additional
fields which is provided to define the related processes are
available. So, the OS uses these data and generally distrib-
utes the message among the related fields to the message
source. As a result, the message won’t be sent to the other
available processes which don’t have relation with the sys-
tem source and their input buffer will be empty of useless
and redundant message. In this case, their input over-
load will be considerable decrease. It can be noted to the
weakness of this case which includes adding additional
data field to the process table to determine the related
processes and also input load of system which resulted
in interaction among the processes during new process
entry to the system20,21.

4.2 Standard Connector Definition of the
Process

After defining EBCP structure and its function about the
received messages from the processes, we come to dis-
cuss about their structure and how they begin to make
relationship with the other processes and which stage
and steps must be taken to provide a proper and suitable
relationship. As the available processes in the OS are orga-
nized and designed based on modern OS structure, so,
changes in their internal structure and providing a stan-
dard structure for all of them will expensive and create a
kind of limitation in the system19–21. We try to keep the
current status of the processes internal structure constant
and don’t apply changes as the process acts as necessary
in their internal structure. The important fact is the pro-
cess external structure and hoe to interact with the other
processes. Along this, to reach the goal, the best method
is to define a standard connector of producing messages
with identifiable structure in the system and sending to
the available EBCP in the OS. Also, if a message is sent
to the process from EBCP, the connector could receive,
identify and process it22.

Figure 4. Sequence Diagram of Interaction among the
Processes, OS and Newly-Entered Process to Collect Related
Processes.

A New Approach for Inter Process Communication with Hybrid of Message Passing Mechanism and Event based Software
Architecture

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org844

The point which must be considered here is that to
regard the structural independency of the processes and
lack of limit for the processes, producing and defining
the process connector isn’t considered as the tasks of the
connector and must be produced by the specific connec-
tor of the OS. The reason is that structure of connector
for all system processes is constant and defined. As the
connector must have a standard structure in total sys-
tem, it is better that the OS produces a specific OS and
specifies it to the processes. The method is that when a
program is converted to a process and the OS records
its data in the process table, the OS produces the specific
connector of new process based on inserted character-
istics in the process table and also available data about
the connector structure and specifies it to the process.
This connector is available in the whole cycle of available
process living and will be accessible and identifiable via
OS. When the process function ends up, the process con-
nector is destroyed by the OS and the process is removed
from the system. We called the process connector Event
Engine to determine it from the main structure of the
processes21–23.

4.3 The Internal Structure of Process
Connector Event Engine

As we noted in Section B, the OS as the process entered,
specifies the specific connector of newly-entered process
and then if it is necessary to have relationship with the
external environment and special with the other process
in the system, it uses specific connector Event Engine. But
the important fact is the internal structure of the process
connector (Event Engine) and how to function in differ-
ent conditions. To reach the optimal and flexible structure
in designing Event Engine, it must be considered the tasks
the connector handles about the process and the sys-
tem23. The process task, due to the system expectations
from processes and the processes from each other, can be
changed. So, dynamic extensibility is an important factor
which must be considered in designing Event Engine. But
the most important and main task of Event Engine is to
send and receive the related messages to the process as
it makes the process capable of making relationship with
the system and other processes23,24. If we want to explain
the relationships among the processes in detail, it can be
noted to the cases such as producing the sent messages
of the process, coding and decoding of messages which
Event Engine handles. Due to the noted points, Figure 5

indicates the proposed model of Event Engine internal
structure in which the edibility and flexibility as quality
features are considered in it.

As it can be seen in Figure 5, Event Engine acts as a
module inside a process based on the process structure.
The Event Engine consists of two input and output buf-
fer. The goal of designing Event Engine is based on buffer
is that it keeps the available Event Engine efficiency and
reaction in the connector when there is high traffic in
the system and the process is capable of processing and
answering to all messages.

The output buffer includes received messages which
from the system core and/or other processes. The input
buffer includes received messages from the system core
and/or other processes. Event Engine Processor is respon-
sible to distribute available messages in input and output
buffers. As soon as a message delivers to the input and
output buffers, EEP indicates reaction and sends the mes-
sage to the target after coding or decoding25.

4.4 The Structure of Sent and Received
Messages

We use an architecture based on event to distribute and
send the messages in the system. So, it concludes that our
method to communicate and make relationship between
processes and different parts of the system is based on
message passing method26. We must answer to a ques-
tion that how must be a message which includes sent and
received data between processes and the system designed
to known as integrated in total system and can be pro-
cessed by all processes? It is clear that a designer can

Figure 5. The Internal Structure of Process Connector
Event Engine and How to Make Relationship with the Other
Parts.

Farhad Soleimanian Gharehchopogh, Esmail Amini and Isa Maleki

Indian Journal of Science and Technology 845Vol 7 (6) | June 2014 | www.indjst.org

improve the system efficiency using different methods
and define the message structure.

In designing the message structure, it must be con-
sidered points such as the message must keep the main
data in the best possible way and completely readable
for the target destination. The structure of the message
must be in a way to determine completely the source
and target of the message26. So we use the well-defined
structure of XML to design message structure. The goal of
designing the message structure based on XML is that we
can maximize the readability of the message by defining
particular tags of different parts of a message and conse-
quently increase the message processing rate desirably by
processes. Developing and improving the structure of the
message to reach the determined goals in the system is
also easily implemented.

In Figure 6, you can see the sample of sent and received
messages structure.

The characteristics of each tag in the provided struc-
ture are provided in Figure 6 and their usages are shown
in Table 1.

5. Reviewing and Evaluation the
Proposed Method

The processes frequently need to make relationship
and communicate with each other and there are differ-
ent methods to do this but we prefer to do this in a way
which is better and more structured than using pauses. In
fact, in providing a strategy, it must be considered several
points7,10. Firstly, how can two processes exchange data
with each other? What can we do to make sure that two or
more processes don’t interfere in their critical activities?
When there is correlation between two or more pro-
cesses, how can we perform the synchronization among

the processes to increase the efficiency? Our method to
send data is based on message delivery as it organizes the
data in XML structural frame and exchanges among the
processes. The defined structure for the messages is in a
way to preserve the main indicators of each message and
can add or remove different controlling options in the
future to it if necessary without its affection on processes
and other OS parts. It is because of the dynamic nature
of XML structure and its support from different kinds
of protocols of data transfer and preserving their secu-
rity using coding algorithms which provide data transfer
to remote machines through heterogeneous networks. It
is as the previous methods such as Procedure Call, the
data transfer is done through parameters in which their
numbers and types are static and decrease the ability of its
change and develop7,8.

It can be said about the simplicity of implementation
that Message-Based, Shared Memory and File System
methods have less complexity in implementation than

Figure 6. The Structure of Exchanged Messages between
Processes and the OS Core Based on the Proposed Method

Table 1. The provided tags in the available message
structure in Figure 6 and their usage
Tag Description
Event Type Determines that the message is sent or delivered

in reaction to the sent message
Event ID Determine the event and/or message code and

can be unique and controlled by the system core
Sent Event
ID

If the message is returned one, it determines
that the message is sent in response to which
sent message

Sender
Name

Determine the name of process or the message
sender which can be the OS core or a process.

Sender ID Determine the process code or the message
sender unit and can be inconsistent with the
available processes table in the OS.

Receiver
Name

Determine the name of recipient which can be
a unit of the OS core or one or a few process.

Receiver
ID

Determine the recipient and can be arranged
based on the processes table.

Date Time Determine the time and date of message
delivery

Input fields It includes data in which the source sent as
input to the target or data in which the source
request the target. The data of this feature can
be a series of ID and values.

Output
Fields

It includes data in which the target determines
as the message reply after processing and
returns it to the message sender. The data of this
feature can be a series of ID and values.

A New Approach for Inter Process Communication with Hybrid of Message Passing Mechanism and Event based Software
Architecture

Indian Journal of Science and TechnologyVol 7 (6) | June 2014 | www.indjst.org846

Procedure Call method if there is different address-
ing space. However, these methods are all related to the
addressing space and must perform additional operations
and controls whether the addressing space is same or
different8,9. While in the proposed method, the required
operation to interact between two processes is related to
the minimum data of the environment and in fact inde-
pendent from circumstances two processes have to each
other which considerably decrease the complication. File
System and Shared Memory methods still faced with
synchronization problem among the processes although
strategies such as locking is provided to sole it but these
strategies increase the complication and decrease the
efficiency8,10,11. While our proposed method which com-
pound Message-based method and software architecture
based on event not only keeps the positive features of
Message-Based using events which acknowledged source
and target processes during occurrence but also increase
the intelligence and synchronization of processes. In
Table 2, it is indicated a general comparison between our
proposed method and the previous ones. The supportive
amount of these methods also indicates the required fea-
tures for an optimal IPC.

6. Conclusion and Future Works
In this paper, we provide a strategy to make combina-

tion of IPC based software architecture based on event
and communication method based on message passing.
As by putting an EBCP in the OS core and also using OS
processes table as a reference to access to the available pro-
cesses in the system, we use it as a communication bridge
among the processes. Moreover, to integrate processes
with the available EBCP in the OS, we use a connector for
each available process in the system. Providing relation-
ship between the processes and available EBCP in the OS
which considered as a communicational highway among
the processes is the main tasks of a connector. We also

provide a standard frame based on XML for received and
sent messages structure to increase the readability and
processing rate of messages. It can be noted to the main
features of the proposed method as the lack of synchro-
nization among the processes, implementation simplicity,
easy expansibility and remote access.

Due to the above-mentioned points, the proposed
method can be used as reference to communicate
between processes and also processes with OS of dif-
ferent kinds and structures. It can also be used message
coding and decoding methods to maximize the security
of exchanged messages among processes. It considers not
only the private limits of modules but also guarantees the
communication security among them. It can also take
major steps by assigning main responsibilities to the pro-
cesses at their structural independency and increase the
OS modularity.

7. References
 1. Theodor AL. Operating system structures to support secu-

rity and reliable software. Institute for Computer Sciences
and Technology, National Bureau of Standards, Washington
D.C; 1976 Aug.

 2. Swift M, Bershad B, Levy H. Improving the reliability of
commodity operating systems. ACM Trans. on Operating
Systems. 2005; 23:77-1..

 3. Goldberg RP. Architecture of virtual machines. Proc of
the Workshop on Virtual Computer Systems, ACM; 1973.
74-112.

 4. Cox A, Mohanram K, Rixner S. Dependable ≠ unafford-
able. 1st workshop on Architectural and system support
for improving software dependability; 2006; San Jose,
California.

 5. Grimshaw A, Humphrey M, Knight JC, Nguyen-Tuong
A, Rowanhill J, G. Wasson, Basney J. The development
of dependable and survivable grids. 2005 Workshop on
Dynamic Data Driven Applications, Emory University,
Atlanta, pp. 22-25, 2005.

Table 2. Comparing the proposed method and the previous ones based on the
features of an optimal IPC

Easy to ImplementExtendableWorks RemotelySynchronizationIPC Mechanisms
GoodWeakWeakWeakShared Memory
GoodWeakWeakWeakFile System
WeakGoodGoodGoodMessage Based
WeakWeakWeakGoodProcedure Call
GoodExcellentGoodExcellentProposed Solution

Farhad Soleimanian Gharehchopogh, Esmail Amini and Isa Maleki

Indian Journal of Science and Technology 847Vol 7 (6) | June 2014 | www.indjst.org

 6. Nicol DM, Sanders WH, Trivedi KS. Model-based evalua-
tion: from dependability to security. IEEE Trans Dependable
and Secure Computing. 2004; 32:1–3.

 7. Avizienis A, Laprie J-C, Randell B, Landwehr CE. Basic con-
cepts and taxonomy of dependable and secure computing.
IEEE Transactions on Dependable and Secure Computing,
Vol. 1, pp. 11–33, 2004.

 8. Candea G, Kawamoto S, Fujiki Y, Friedman G, Fox A. Micro
reboot – A technique for cheap recovery. Symposium on
Operating Systems Design and Implementation; 2004; San
Francisco, CA . p. 31–44.

 9. Tanenbaum AS, Herder JN, Bos H. Can we make operating
systems reliable and secure? Computer. 2006; 39: 44–51.

10. Garlan D, Shaw M, Okasaki C, Scott C, Swonger R.
Experience with a course on architectures for software
systems. Proceedings of the Sixth SEI Conference on
Software Engineering Education; 1992 Oct. Springer-
Verlag. LNCS 376.

11. Randell B. Operating systems: the problems of perfor-
mance and reliability. University of Newcastle upon Tyne,
Computing Laboratory; 2007.

12. Bao Y, Sun X, Trivedi KS. A workload-based analysis of
software aging, and rejuvenation. IEEE Trans Reliability.
2005; 54:54-57.

13. Fowler M. Patterns of enterprise application architecture.
Boston: Pearson Education; 2003.

14. Fähndrich M, Aiken M, Hawblitzel C, Hodson O, Hunt G,
Larus JR, Levi S. Language support for fast and reliable mes-
sage based communication in singularity OS. Proceedings
of the EuroSys 2006 Conference, Leuven, Belgium; 2006. p.
177–90.

15. Recommended Practice for Architectural Description
of Software Intensive Systems. Technical Report IEEE

P1471-2000. IEEE Standards Department. The Architecture
Working Group of the Software Engineering Committee;
2000.

16. Riehle D. The economic motivation of open source soft-
ware: Stakeholder perspectives. IEEE Computer. 2007 Apr.
40(4): 25–32.

17. Pope K. Zend Framework 1.8 Web Application Develop-
ment. PACKT Publishing; 2009.

18. Ahn G, Hu H, Jin J. Security-enhanced OSGi service envi-
ronments. IEEE Trans Syst Man Cybern C Appl Rev. 2009;
39(5).

19. Fowler M, Rice D, Foemmel M, Hieatt E, Mee R, Stafford
R. Patterns of enterprise application architecture. Addison
Wesley; 2002.

20. Hall RS, Pauls K, McCulloch S, Savage D. OSGi in Action.
Manning Publications; 2011.

21. Chappell D. Enterprise Service Bus. O'Reilly Media, Inc;
2004.

22. Bos H, Samwel B. Safe kernel programming in the OKE.
IEEE Open Architectures and Network Programming.
2002; 141–152.

23. Chou A, Yang J, Chelf B, Hallem S, Engler DR. An empirical
study of operating system errors. Symposium on Operating
Systems Principles; 2001. p. 73–88.

24. Herder JN. Towards a true micro kernel operating system.
Master’s Thesis. Vrije Universiteit Amsterdam; 2005.

25. Chen D, Dharmaraja S, Chen D, Li L, Trivedi KS, Some RR,
Nikora AP. Reliability and availability analysis for the JPL
Remote Exploration and Experimentation System. Proc. of
DSN; 2002.

26. Kim DS, Machida F, Trivedi KS. Availability modeling and
analysis of a virtualized system. Proc. of PRDC; 2009.

