
Abstract
Influence of viscous energy dissipation, heat generation and radiation on nonlinear MHD boundary layer 2-D flow of gray 
fluid past a linear stretching porous sheet with prescribed heat flux is studied. Exact solution of momentum equation 
and skin friction coefficients are obtained with the help of similarity transformations. Energy equation is solved using 
nonhomogeneous confluent hypergeometric function. Influence of Eckert number, magnetic field together with heat 
generation is to enhance the temperature distribution whereas the effect of porosity, Prandtl number and radiation is 
to suppress it. Such flow of fluids has abundant practical applications in polymer processing industry, lubrication, 
energy storage and recovery, insulation of buildings and equipments and also in many engineering areas such as nuclear 
engineering, mechanical engineering and civil engineering etc. 
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B0 applied magnetic field
→
H0 uniform magnetic field of strength
Cp specific heat of the fluid at constant pressure
Cf local skin friction co-efficient
a Positive constant called stretching rate
v0 constant suction velocity
S suction parameter (S > 0),
M2 magnetic interaction parameter
E0 positive constant
K thermal conductivity
Q0 volumetric rate of heat generation
T fluid temperature
T∞ �Temperature of the fluid far away from the surface 
' prime denotes differentiation with respect to η

m heat flux parameter

Sh heat source parameter 

qr radiative heat flux

qw rate of heat transfer at the wall

ψ stream function

ν kinematic viscosity
ρ fluid density

σ electrical conductivity of the fluid

σ* Stefan-Boltzmann constant

α* Rosseland mean absorption coefficient

Pr Prandtl number

Rd Radiation parameter

Ec Eckert number
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1.  Introduction
Heat transfer plays a crucial role in industrial processes, 
electronic devices and food processing etc. In particularly, 
thermohydrodynamic analysis of fluid film lubrication of 
mechanical components, viz., bearing, gears and seals 
is basically a heat transfer analysis where in heat gener-
ated due to viscous sheer of the lubricant is dissipated 
through convection, conduction and to some extend by 
radiation is balanced. In the analysis heat transfer due to 
convection and conduction is considered to seek balance 
between the heat generated and heat dissipated to achieve 
an equilibrium condition. This helps in determining the 
temperature rise in the fluid film and the surrounding sol-
ids1. Not only in lubrication, but also in engineering and 
applied scientific areas, boundary layer MHD flow with 
radiative heat transfer past a stretching sheet in the pres-
ence of viscous energy dissipation, heat generation and 
radiation plays a vital role. In view of all these, this work 
is mainly focused on a problem of such kind.

Gebhart was the first to reveal that whenever natural 
convection region is extensive or the body force is 
extremely high then the influence of viscous dissipation is 
considered2. He gave the solutions for temperature distri-
bution using perturbation method for pr various from 0.01 
to 10000. The pioneer work of fluid flow in the presence 
of transverse magnetic field was developed by Pavlov3, 4. 
However, the solution given by him was approximate and 
he didn’t find the analytical solution. 

Vajravelu and Hadjinicolaou and Chaim both expressed 
the analytical solution for temperature5, 6. They investigated 
the influence of viscous energy dissipation and heat source 
on the flow field with suction/blowing. The temperature 
distribution for the flow problem was obtained analytically 
for the two different cases namely (i) when the stretching 
surface is subjected to variable temperature (PST Case) 
and (ii) when the rate of change of heat per unit area is 
prescribed on the surface (PHF Case). The influence of 
magnetic field is also considered in Chaims’s work6. 

Vajravelu found a numerical procedure to solve 
momentum, energy and mass equations for finding veloc-
ity, temperature and concentration distribution using 
Runge Kutta numerical method7. Raptis et al., considered 
such type of flow field with the influence of both magnetic 
field and radiation. But he also got, only the numerical 
solution8. 

Therefore, Cortell developed the analytical solution 
for the flow field with viscous energy dissipation and 

radiation effect9. He used Kummer’s method to find the 
temperature with the correct boundary condition for 
both PST and PHF case. Das et al., gave the analytical 
solution obtained by the implicit relations with the help 
of boundary conditions for the elastic-viscous oldroyd 
model liquid over a semi-infinite region10. Ahmed and 
Kalita considered the porous plate subject to periodic suc-
tion velocity in the normal direction using perturbation 
method solutions are obtained by neglecting the powers 
of ε more than one11. 

Recently, the influence of heat source and radiation 
on MHD flow past a stretching porous sheet with heat 
and mass transfer was discussed by Anjalidevi and 
Kayalvizhi12. She developed the analytical solution for 
both temperature and concentration distribution using 
Kummer’s method for prescribed heat and mass flux.

But so far, no contribution has been developed to 
find the analytical solution of 2-D hydromagnetic non-
linear gray fluid flow past a stretching porous sheet with 
the influence of radiation, viscous energy dissipation and 
heat generation. In order to obtain more realistic solution, 
prescribed heat flux is considered in this work.

2.  Formulation of the Problem 
The boundary layer 2-D, viscous gray fluid flow past a 
porous sheet with prescribed heat flux is considered. 
The sheet is stretched linearly with the velocity u = ax 
where the fluid flow is along the parallel x - direction of 
the stretching sheet. The laminar flow of an electrically 
conducting fluid in the presence of viscous dissipation, 
heat generation, radiation and transverse magnetic field 
is considered. 
In addition, the analysis is based on the following 
assumptions: 

The fluid flow with constant physical properties in •	
Cartesian coordinates.
The magnetic Reynolds number is assumed as so small •	
so that the induced magnetic field is considered to be 
negligible. 
In the energy equation, Joule’s dissipation is •	

considered to be negligible and 
q
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Incompressible, steady flow at a large Reynolds 
number over a stretching sheet with zero pressure 
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gradients with the above assumptions, the equation for 
the flow and energy equations are 
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The last term on the right hand side of equation (3) 
signifies the radiation effect. Rosseland approximation is 
assumed 

[Raptis8] which leads toqr and hence
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Substituting eqn. (4) in (3), hence eqn. (3) becomes
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3.  Mathematical Analysis

3.1  Flow Analysis
Boundary conditions pertaining to velocity are

At y = 0 : u = ax, v = -v0

As y → ∞ : u = 0� (6)

Where, 0v S an= .
The following similarity transformations are 

introduced to transform the partial differential equation 
(2) with boundary condition (6) is into ordinary 
differential equation. 
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A stream function ψ is defined by:
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Equation (1) is satisfied automatically. 
Employing the equations (7) and (8), the partial dif-

ferential equation (2) with boundary condition (6) is 
reduced to the following ordinary differential equation

	 ′′′ + ′′ - ′ - ′ =f f f f M f2 2 0 � (9)

with boundary conditions

	 f Sh( ) = , ′ ( ) =f Sh  at η = 0

	 ′ ( ) =f h 0  as η → ∞� (10)

The exact solution of equation (9) subject to the 
boundary condition (10) is
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magnetic interaction parameter .� (11)

3.2  Skin Friction

t m∗

=

= ∂
∂







u
y

y 0

 gives the shear stress at the wall and the 

non-dimensional shear stress is ′′ = -f ( )0 a  which is 
known as skin friction co-efficient Cf .

3.3  Heat Transfer Analysis
Solution of equation (5) is obtained by using the following 
prescribed heat flux boundary condition
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For m = 0, represents the rate of change of heat per 
unit area is uniform. Using the similarity variable 

	 T T E
K axm- = ( )∞

0 n q h( ) � (13)

the equation (5) can be written as

	 ′′ + ′ - ′ -( ) = - ′′q b q b q b  f mf S Ec fh � (14)

where, b =
+

3
3 4

Pr R
R

d

d

, Pr =
nrC

K
p  is the Prandtl number, 

R K
Td =
∗

∗
∞

a
s4 3

 is the Radiation parameter, S
Q
C ah

p
= 0

r
 is 

the heat source parameter, Ec
U

C
E
K a

x

w

p
m

=







2

0 n
 is the 

Eckert number . 

Using (13), Equation (12) reduces to

	 ′ ( ) = -q h 1 at η = 0

	 θ(η) as η → ∞� (15)
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New variable ξ is introduced such that x b
a

a h= -
2 e- . 

Now equation (14) and (15) reduces to
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where, g b
a

a= +( )2 1 S  and assuming heat flux 

parameter m = 2.
The solutions of the equation (16), satisfying boundary 

condition (17) in terms of dependent variable η, are
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The non-dimensional temperature at the wall is 
obtained by using eqn. (18) as
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4.  Discussion of the Results
Numerical computations of results are demonstrated 
through graphs for different non-dimensional parameter. 
Equation (18) gives the solution for the non-dimensional 
temperature distribution for prescribed wall heat flux. 

This dimensionless temperature distribution θ(η) for 
several values of the dimensionless parameters is depicted 
through Figures 1 to 6. Also the values of non-dimensional 
wall temperature θ(0) for various values of M2, S, Rd, Sh, Pr 
and Ec are presented in Table 1.

Figure 1 depicts the distribution of non-dimensional 
temperature θ(η) versus η, by choosing various values 
of M2. The effect of magnetic field in the presence of 

Table 1.  Wall temperature θ(0) for various values of 
physical parameters

Rd Sh M2 S Pr Ec θ(0)

1 0.05 4 1.5 0.71 0.01 1.48982

2 1.07702

3 0.940852

4 0.872936

109 0.669378

3 0 4 1.5 0.71 0.01 0.919706 

0.05 0.940852 

0.1
0.15
0.2

0.964539
0.991492
1.02283 

3 0.05 0 1.5 0.71 0.01 0.84481

1
4

0.87789
0.940852

9 1.00166

16 1.05355

3 0.05 4 0.5 0.71 0.01 1.497

1
1.5

1.15734
0.940852

2 0.788629

2.5 0.676185

3 0.05 4 1.5 0.71
1

0.01 0.940852
0.684997

1.75 0.414379

2.3 0.326034

7 0.125648

3 0.05 4 1.5 0.71 0 0.933957

0.001 0.934647

0.01 0.940852

0.05
0.1

0.968432
1.00291
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θ(η)for both air and water. It is clearly noted that the 
influence of heat generation over non-dimensional tem-
perature is less significant in water. However, the effect is 
clearly seen in the case of air. 

Figure 5 clearly discloses influence of Eckert number 
(Ec) over the temperature field for both air and water. 
As Ec increases, the temperature also increases. It is 
clear from Figure 6 that the temperature decreases with 
increases of Prandtl number Pr.

Figure 1.  Effect of M2 on temperature distribution.

porosity is to increase the temperature field. But it has less 
significant effect over temperature distribution.

Variation in dimensionless temperature due to the 
variation of suction parameter (S) is visualized using 
Figure 2. It is inferred that temperature decreases with 
an increase in S. The influence of radiation over non-
dimensional temperature is demonstrated using Figure 3. 
As radiation increases, the temperature decreases. 

Figure 4 reveals the fact that the influence of heat 
generation enhances the non-dimensional temperature 

Figure 2.  Effect of S on temperature distribution.

Figure 3.  Effect of Rd on temperature distribution.

Figure 4.  Influence of Sh over dimensionless temperature 
for air and water.
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Figure 5.  Dimensionless temperature for various Ec, for 
both air and water. 

Figure 6.  Non-dimensiona temperature for different Pr.

5.  Conclusion 
Generally, Influence of the physical parameters affects 
the velocity profile and temperature profile. When there 
is no radiation, the results are identical to that of Chaim 
for prescribed heat flux case6. When there is no magnetic 

field and in the absence of heat source, the analytical 
solution of momentum equation and numerical values 
obtained for temperature are identical to that of Cortell 
for prescribed heat flux case9. 

We concluded that the temperature distribution and 
the wall temperature enhance for increasing values of 
magnetic field, Eckert number and heat generation. But 
the influence of porosity, radiation and Prandtl number 
is to individually reduce the temperature distribution and 
wall temperature.
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