
Abstract
Background/Objective: The objective is to minimize ambiguous test cases by using Adaptive Genetic Algorithm (AGA).
Problem description/Proposed Method: Here we are concerned with the problem of randomly generated test cases.
It can contain some ambiguous test cases, which lead to problems at the organizational level. A random algorithm will
generate random test cases each time it is run, and it will have resemblance each time. Another problem related to random
algorithms is that running them can take a lot of time. To minimize these issues we propose a new technique, which will
reduce the given drawbacks. We proposed an Adaptive Genetic Algorithm (AGA), which will provide legal input in each
case where it applied. Thus the problem of ambiguity will decrease. Results/Findings: In this research, the near optimal
inputs will be generated based on the Adaptive Genetic Algorithm (AGA), which will reduce the illegal inputs. The fault
detection rate is used as the fitness function in AGA. To remove the fault proneness, our AGA uses the coverage metrics of
the test cases. Conclusion: Random algorithms will generate low cost test cases in large number but problem is that it will
consists ambiguous test cases ,to reduce these here we are using AGA which will further reduce test cases by moderating
the illegal inputs.

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(8), 715–719, April 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Developing Optimal Directed Random Testing
Technique to Reduce Interactive Faults-Systematic

Literature and Design Methodology

K. Koteswara Rao1* and G. S. V. P. Raju2

1CSE Department, GMRIT, Rajam & Research Scholar @JNTUK, India; koteswararao.k@gmrit.org
2Department of CS&ST, Andhra University, Visakhapatnam, AP, India; gsvpraju2011@yahoo.com

Keywords: Reliability, Software Metrics, Software Quality

1.  Introduction

In the development of different technologies in the field
of software, Software testing is an essential activity to
measure the quality of the software systems. But it is very
slow and requires more effort and still remains an imper-
fect process. Software testing is the primary activity for
estimating reliability of the software. Now it is the time
to consider how the testing can be done more effectively
with in short duration with the use of automated system-
atic methods1. In the development of the software, systems
are becoming highly configurable to satisfy various needs
of customers; hence high level configurability demands
new challenges for reusable software with reduced cost.

For example, embedded systems having soft or hard real
time control programs and its applications required many
levels of configurations. Many runtime failures are also
identified after self-inbuilt software and hardware tests.
In industrial systems, there are typical millions of pos-
sible configurations where possibly only a small subset of
combinations can trigger failures, multiple levels of con-
figuration may lead to failures. Quality of configurations
testing leads to less or no failures in system configura-
tions2. The question is how to maximize failure detection
when it is not possible to test all configurations. A pre-
view of some testing functions will be described below.

Developing Optimal Directed Random Testing Technique to Reduce Interactive Faults – Systematic Literature and Design
Methodology

Indian Journal of Science and TechnologyVol 8 (8) | April 2015 | www.indjst.org716

1.1 Testing

In the Figure 1.1 - 1.3 we can observe self-destruction
of Ariane 5 rocket after 37 seconds launch. The main
cause was undetected bug in control software and con-
version exception from 64-bit floating point to 16-bit
signed integer. Total Cost of the project was over $1
billion. If they detected the above bug $1 billion might
have been saved. That’s why Proficient testers are
well-engaged and well-paid people. As there are vari-
ous testing strategies based on requirements, situation
will determine the testing suitable strategy. However,
in this paper, we will emphasize random testing only.

2.  Why Random Testing (RT)

RT is the process of generating the automated test cases
purely on a probability distribution. It entirely differs from
ad-hoc testing. Here two types of distributions are there
1. Uniform: in the entire input domain test cases is chosen
with an equal probability.
2. Operators: test cases are drawn from prudently col-
lected and defined historical usage data.
Random testing is useful in generating large number of
test cases, then manually generated, but domain should
be well structured. It is a form of functional testing that
is useful when the time needed to write and run directed
tests is too long. One of big issues in random testing
is to know when and how tests will fail. In RT the test
cases are generated at random from the input domain,
and it described as fast testing technique by the software
experts. It has been effective testing in many testing sce-
narios, even though, often considered as a naive strategy.
There are different ways to give random test cases sam-
ples, when test cases have variable length representation.
We can generate the test cases randomly in different ways.
The aim of random testing is to identify the test failure for the
test cases in which a program fault (a particular bug, repaired

During design and construction software is tested to
uncover errors. Testing is an integral part of any proj-
ect or process developed to yield the desired output.
Particularly in software in any stressful environment,
criticality grows with the complexity and size of the
requirements. The IT world has witnessed many disas-
ters because of the failure of software products. Now a
day in every industry, ensuring the quality and reliabil-
ity of software products has become an important issue.
So, to ensure software reliability testing is one of the
most demanding tasks in software development. It dis-
covers problems and ensures quality, acceptability. The
goal of testing is to find faults, not to prove correctness.
Testing is necessary to avoid
•	 Perpetual “software crisis,” the roots of the soft-
ware crisis are complexity, expectations, and change.
•	 Ever-increasing complexity, continuous stories
about unworthy software (faulty software)
•	 Customer dissatisfaction, damage
•	 Revenue loss
The following example explains the how efficient testing
saves the revenue.

Figure 1.1 Ariane 5 ready for launch.

Figure 1.2 Ariane 5 launched.

Figure 1.3 Ariane 5 destruction.

K. Koteswara Rao and G. S. V. P. Raju

Indian Journal of Science and Technology 717Vol 8 (8) | April 2015 | www.indjst.org

by a particular fix) induces an error in the program state
that propagates to an observable output. Recent works
on random testing have focused on strategies for testing
interactive programs, including file systems, data struc-
tures and device drivers. For such programs, a random
test suite is a set of test runs3. Random testing is best suit-
able for the numerical inputs, but with the development
of different paradigms, the interest in random testing
has been increased due to the advantages it offers. This is
clearly mentioned in the various studies in the literature,
which apply RT to the area of their interest4,5. Random
testing techniques intuitively can be categorized into pure
and enriched due to the strategies they use for test input
generation and selection5. A major strength of Random
Testing is that it is a cost-efficient method for creating huge
diverse test cases that would be expensive to create manu-
ally. Hence it novel method to find low-frequency faults
effectively that non-random testing might not discover6.

3.  Technical Details

Random testing can generate huge number of test cases
with lower cost to ensure the reliability of the software.
Generally testing is time consuming and imperfect,
requires more effort and also cost effective. Random
testing is a fully automated testing tool to identify the
faults between the specifications and its implementation,
it will cover all the paths while generating the test cases
for the implementation and increase the input values to
test with different inputs. Various techniques are used
for generating test cases randomly. Feed back directed
random test generation7 outputs a test suite contains
unit tests for the classes under test, passing tests ensure
code contracts that preserved across program changes,
failing tests pointing to potential errors that should be
corrected. RT for Object-Oriented Software is used to
find bugs in widely used industrial-grade code but not
limited to seeded ones. RDRT is a dynamic technique
which uses latent obtained data races information to
distinct real races from false without inspecting manu-
ally8.Test cases and its test suite can be generated using
many approaches. In our proposed model, we generated
optimized test cases using random technique. Identified
header test case consists of an optional receiver object
and its required list of variables. The instance of a Class
under test is a receiver. Variables are primitive value or
an object. In our model primitive Variables are selected

using random manner. Using mutation operator newly
generated objects are mutated. Mutation operator and
its constructor are selected using random procedure.

4.  Origin and Definition of the
Problem
Scalability and effectiveness are important problems
that need to be considered while testing and they are
critical issues in the software industry. Many studies of
real-world software applications are unique due to the
complexity of the software as it requires too much time
to carry out them. The aim of random testing is to gen-
erate huge number of test cases in such a way that to
identify all possible bugs. There is no guarantee that
test case shall trigger failures in direct manner. In the
view of mathematical stand point faults may not con-
sider as targets. Test cases are written with the constraint
that at least one test case is chosen from each sub-
domain. For example, the functionality of the software
can be considered as another sub-domain to be tested.
During the generation of test cases, depending on the
input domain one should generate and run several
test cases to verify that they belong to a given input
domain. An observation shows that many program
bugs result and lead to failures in contiguous zones of
the input domain. RT identifies the failure detection
by generating the test cases randomly to improve the
effectiveness of testing with the different inputs given
to the arbitrary generated test cases. If the test failure is
not triggered for the first time again the random test-
ing runs on the same domain until it reveals failure.

5.  Review Status of Research and
Development in the Subject

A wide range of research is happening in this field. Some
of the recent worldwide literature is presented here.	
As per the hypothesis proposed by Andrea Arcuri and
Lionel Briand have used random testing input generation
likely identify interaction faults as related to combinatorial
testing with no effects. Effectiveness of random testing gets
higher fault detection rate as compared to combinatorial
testing with a number of related effects. The approach of
random testing, implementation feasible, in place of com-
binatorial testing with large number of effects for larger

Developing Optimal Directed Random Testing Technique to Reduce Interactive Faults – Systematic Literature and Design
Methodology

Indian Journal of Science and TechnologyVol 8 (8) | April 2015 | www.indjst.org718

systems applying random testing or combinatorial testing
scenario for a project testing phase with budget con-
strained may have minimum assurances on the probability
of identifying faults at any interface phase. Combinatorial
testing acquires higher performance as compared to ran-
dom testing, when constraints were embedded between
features.
An empirical output review by Andrea Arcuri et al9

Identified random testing issues related to its need of exe-
cution duration, test target, scale and possible output on
the identical testing issues
Implemented and mathematical analysis is easy in the case
of random testing9, so it produces accurate and valuable
required reports. Empirical results proposed that, some
identified conditions in which random testing is accepted
for implementation. Generated simulation analysis sug-
gested that, it can be applied in different types of products
with different testing conditions. Optimized unit based
test coverage can be achieved applause GA to identify
parameters for random testing.
The approach presented by James H. Andrews and et al9

Implementation of reduced GA on complete system pro-
duces the same results with less time. James H. Andrews
and et al9 Presented an idea to obtain high coverage using
FSS tool to reduce extent of the embedded representation
in GA. Randomized unit testing has been investigated
in9,10 by James H. Andrews and et al identified that it is an
evolving technology but it required proper setting of the
required parameters in test algorithm.

5.1 Importance of the Proposed Proposal in
the Context of Current Status

This research output proposal is important in gen-
eration of test cases, field of random software. This
proposal can shrink the ambiguity of randomly gen-
erated test cases. It will provide a valid test case for
each time test cases will be generated. Another point
of importance is to identify the reduced fault prone-
ness it will use the coverage metrics for test cases.

6.  Proposed Methodology
“Software is tested to uncover errors that were during its
design and construction, testing is a set of activities that can
be planned in advance and conducted systematically”11.
This is the reason behind the software testing placed; it
includes test case design technique and testing methods in

software process. Random testing generates test cases
founded on the input domain based on some distribu-
tion; these test cases are sampled in the system under
test. The main disadvantages of random testing are 1)
lengthy test case generation12; 2) it can produce identical
test cases for multiple times 3) it can create many illegal
inputs. In order to overcome these issues, we propose an
optimal directed random testing technique for reduc-
ing the faults. In this research, the optimal inputs will be
generated based on Adaptive Genetic Algorithm13 (AGA)
which is famous evolutionary soft computing, which will
reduce the illegal inputs and equivalent inputs. The fault
detection rates will be the fittest of the AGA. Another
important point is to identify the reduced fault prone-
ness AGA will use the coverage metrics for test cases.
Our proposed methodology will prune the input space
by combining the previous input with the current one
which is one of the main advantages of soft computing14.

7.  Conclusion ad Expected
Outcomes
The Adaptive Genetic Algorithm (AGA) will
reduce the illegal inputs and equivalent inputs of
arbitrary generated test cases. This will remove ambi-
guity of randomly generated test cases. The output
produced by the Adaptive Genetic Algorithm will be
legal and can be further used for analysis purposes.

8.  References

1.	 Chen TY, Kuo F-C, Merkel RG, Tse TH. Adaptive random
testing: the ART of test case diversity. Faculty of Information
and Communication Technologies, Swinburne University
of Technology. Australia; 2009.

2.	 Arcuri A, Iqbal MZ, Briand L. Formal Analysis of the
Probability of Interaction Fault Detection Using Random
Testing. IEEE Transactions on Software Engineering. 2012
Sep; 38(5):1088–99.

3.	 White D, Arcuri A, Clark J. Evolutionary Improvement of
Programs. IEEE Transaction Evolutionary Computation.
2011 Aug; 15(4):515–38.

4.	 Harman M. The current state and future of search based
software engineering. Proceedings on Future of Software
Engineering; 2007. p. 342–57.

5.	 Sharma R, Gligoric M, Arcuri A, Fraser G, Marinov
D. Testing Container Classes: Random or Systematic?
Proceedings on Fundamental Approaches to Software
Enginerring; 2011.

K. Koteswara Rao and G. S. V. P. Raju

Indian Journal of Science and Technology 719Vol 8 (8) | April 2015 | www.indjst.org

6.	 Seen K. Race directed random testing of concurrent
programs, ACM; 2008.

7.	 Pacheco C, Lahiri SK, Ernst MD, Ball T. Feedback-directed
Random Test Generation; 2007.

8.	 Ciupa I, Leitner A, Oriol M, Meyer B. Experimental
assessment of random testing for object-oriented software.
ACM; 2007.

9.	 Arcuri A, Briand L. Random Testing: Theoretical Results
and Practical Implications. IEEE transactions on Software
Engineering. 2012 Apr; 38(2):258–277.

10.	 Andrews JH, Menzies T, Li FCH. Genetic algorithms for
randomized unit testing. IEEE transactions on software
engineering. 2011 Feb; 37(1):80–94.

11.	 Pressman RS. Software Engineering – a practitioners
approach, 7th edition; 2009.

12.	 Ciupa I, Leitner A, Oriol M, Meyer B. Experimental
assessment of random testing for object-oriented software.
ACM; 2007.

13.	 Rao KK, Raju GSVP. Optimizing the software testing
efficiency by using a genetic algorithm – a design
methodology. ACM SIGSOFT. 2013 May; 38(3):1–5.

14.	 Rao KK, Raju GSVP. An overview on soft computing
techniques. springer communications in computer and
information science. 2011; 169:9–23.

