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Abstract
Background: All natural signals are subjected to sparsity when they are properly represented by a basis function. Sparsity 
helps us to sample the signals less than Nyquist rate which clearly explained by the recent theory known as compressive 
sensing. Methods: This paper explains that DFT does a good job in converting the given image into sparse when the energy 
density of the image is varied and also a cascaded transform DFT and DWT is proposed. Qualitative measures for the cas-
caded transform were observed to be good. Result: It helps us to convert a given image signal into sparse without loss in 
information content present in that image. Application: While converting an analog signal into digital, sparsity will help to 
compress a given analog signal before conversion. So the number of samples obtained by sampling the compressed signal 
becomes less.
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1. Introduction
Compressive sensing is a recent theory which proves that 
even if a given signal is under sampled, it can be recon-
structed without much loss. Here the sampling is done in 
information rate rather than the Nyquist rate. Basically 
Discrete Fourier Transform is used to compress 1D signal 
whereas Discrete Cosine Transform and Discrete Wavelet 
Transform are good for compressing 2D signals1–8. This 
paper explains that DFT does well with 2D signals say 
images. If the energy density ranges of an image after 
applying DFT is varied then the PSNR and MSE val-
ues of the reconstructed image improves. So that one 
can prove that the reconstructed image quality can be 
improved by varying the energy density of the image. In 
this paper DFT was applied to the reference images Lena 
and Cameraman, where the energy density of the images 
varied to improve the qualitative measures of the recon-
structed images using inverse DFT. Also the second order 
wavelet transforms were cascaded with the DFT to find 

better qualitative measures than the measures observed 
for only DWT applied over the same images. However 
HAAR transform stands best in compressing image, so 
leaving HAAR other second order wavelet transforms 
were cascaded with DFT to obtain better qualitative mea-
sures. 

2. Transforms and Sparsity
Sparsity plays a key role in the modern known as com-
pressive sensing which explains that a signal can be 
reconstructed with fewer samples measured. It is very 
helpful in some applications like analog to digital con-
verter which is used to sample radio frequency signals 
where high rate ADC is required and also bandwidth 
required to transmit the samples is high. This makes the 
system costlier, sparsity helps in sampling the given signal 
in information rate rather than the Nyquist rate so that a 
low rate ADC is enough for sampling. So that the number 
of samples measured will be less and also the bandwidth 
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required for transmitting the samples is less which makes 
the system cost effective. Sparsity always deals with the 
signals that are loosely bound. It is defined as the frac-
tions of zero elements present in sparse matrix17. A sparse 
matrix is a matrix that has zero and nonzero components 
of a signal. We know that all natural signals are sparse in 
nature if they are represented by a proper basis function 
or transforms. Various transforms discussed in this paper 
are DFT and DWT. In DWT the following wavelets SYM2, 
COIF1, DB2, DB10 and DMDEY are discussed12–16.

Discrete Fourier transform DFT is a sampled trans-
form which has only group of large samples that describes 
the spatial domain image. For a N×N image, the two 
dimensional DFT is given by the equation 1,
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where f(i,j) is the image, exponential term is the basis 
function corresponding to each point F(k,l) in Fourier 
space. The inverse Fourier transform required to recon-
struct the image is shown in equation 2.
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Daubechies wavelet was proposed by a mathematician 
called Ingrid Daubechies. It is an orthogonal wave-
let mostly chosen to get higher number of vanishing 
moments,

N=2A

Where N is the length of taps and A is the vanishing 
moments. It can be represented in two ways, in terms of 
length of the taps say DM or in terms of number of van-
ishing moments for e.g. dbA. In this paper we have taken 
db2 and db10 for analysis. Ingrid Daubechies, the math-
ematician made some modifications in his previously 
proposed wavelet Daubechies, to derive symlets. So sym-
lets and daubechies wavelets have same properties. There 
are several symlet wavelets ranging from sym2 to sym 
20.In this paper sym2 are taken for analysis. This wavelet 
was invented by Ronald Coifman proposed the wavelet 
called COIF. This wavelet is symmetric and has vanishing 
moment of A/3 and a Tap length of A/3-19–11.

3. Proposed Algorithm
A cascaded transform is proposed just by fusing DFT and 
DWT other than HAAR wavelet because HAAR wavelet 

is incomparably best for image compression. But other 
second order wavelets don’t produce good performance 
when compared to HAAR. So in order to increase the 
quality of the retrieved image, instead of using the DWT 
transforms like coif1, sym2, db2, etc separately on images 
they were cascaded with DFT. Before creating the cas-
caded transform, the apt energy density range of the image 
after applying the DFT is found to obtain good qualita-
tive measure values for the reconstructed image. Figure 1 
shows the block diagram for the proposed algorithm.

Initially DFT is applied to the input image so that 
the image gets decomposed into number of energy coef-
ficients. Keeping the larger coefficients throw away all 
other coefficients and apply inverse DFT to reconstruct 
the input image which makes the image compressed. 
Now we say that the input image has been converted to 
sparse. But the performance measures like PSNR an MSE 
values are satisfactory. So the energy density range of the 
image was varied, initially while applying DFT the default 
energy density range was 16. This range was reduced to 10 
first and then 6, it was found that PSNR and MSE values 
improved which means the quality of the reconstructed 
image was good. When the energy density range was 
reduced below 6 the values remained the same so keeping 
this 6 as the threshold value for the energy density range 
further analysis were made. When the qualitative mea-
sures of the reconstructed image by applying DFT keeping 
0 to 6 as the energy density range were compared with the 
values obtained by applying DWT like sym2, coif1, db2, 
and db10 the later was found to less. So the compressed 
image using DFT was applied with second order DWT to 
once again decompose the image in to number of energy 
coefficients. All the smaller coefficients were discarded 
and inverse DWT was applied to the larger coefficients 
to reconstruct the original image. It was found that quali-
tative analysis of the reconstructed image was extremely 
good.

4.  Simulation Result and 
Discussion

Reference images Lena and Cameraman which are of 
different in size and format were taken and applied with 
DFT to decompose them into number of energy coef-
ficients. The energy density range was from 0 to 16, the 
energy coefficients less than 16 were discarded and only 
the larger coefficients were applied with inverse DFT to 
recover the image. The PSNR and MSE values were not 
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satisfactory so the energy density range was reduced to 
10 and then 6. The PSNR and MSE values were good for 
the recovered image of the reduce energy density. The 
PSNR and MSE values of the reconstructed Lena and 
Cameraman image for various energy density is shown 
in Table 1 and Table 2 respectively. The various energy 
density diagrams for Lena and Cameraman is shown 
in Figure 2 and Figure 3 respectively. After this various 
DWT were applied for the Lena and Cameraman image, 
keeping this energy density range 6 as the threshold value 
lower coefficients less than 6 were omitted and inverse 
DWT were applied for the larger coefficients to recon-
struct the original image and their performance measures 
were analyzed. Finally DFT and DWT were cascaded to 
find a cascaded image transform and also their qualita-
tive measures were analyzed to find these measures were 
greater when compared to that of former. The perfor-
mance measures of various transforms applied on Lena 
and Cameraman image is shown in Table 3 and 4 respec-
tively. The various performance measures analyzed for the 
reconstructed Lena and Cameraman image are as follows. 
The MSE value should be as low as possible then only the 

Figure 1. Block diagram of Cascaded Transform to convert an image into sparse.

Figure 2. Various ranges of energy densities with 
their colour bar when DFT is applied on Lena image

Figure 3. Various ranges of energy densities with 
their colour bar when DFT is applied on Lena image.

Table 1. MSE and PSNR values of the reconstructed 
Lena image shown for various energy densities

DFT MSE PSNR

DFT(16) 8.7730e-008 118.6993
DFT(10) 9.5626e-009 128.3591
DFT(6) 3.0270e-028 323.3547

Table 2. MSE and PSNR values of the reconstructed 
Cameraman image shown for various energy densities

DFT MSE PSNR

DFT(16) 1.1568e-008 127.5322
DFT(10) 1.1568e-008 127.5322
DFT(6) 1.0215e-028 328.0725
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Table 3. Performance measures of various transforms applied on Lena image

TRANSFORM
MSE PSNR SSIM NCC FOM

ENTROPY
ORIGINAL

ENTROPY
RESTORED CR

Db2 1.0046 48.14 0.9930 0.9999 0.9674 7.4460 1.7247 76.4268
Db10 0.9334 48.46 0.9937 0.9999 0.9731 7.4660 1.4227 76.6503
Coif1 0.9847 48.23 0.9931 0.9999 0.9667 7.4660 1.7117 77.0106
Sym2 1.0446 48.14 0.9930 0.9999 0.9674 7.4660 1.7247 76.4268
dmey 0.8771 48.73 0.9942 0.9999 0.9791 7.4660 1.2164 76.4268
dft+dmey 1.8271e-004 85.54 1 1 1 7.4460 4.5155 76.4268
dft+sym2 1.0443e-004 87.97 1 1 1 7.4460 4.6197 76.4268
dft+coif1 2.7568e-022 263.76 1 1 1 7.4460 4.5813 76.4268
dft+db10 0.0019 75.38 1 1 0.9999 7.4460 4.6473 76.4268
dft+db2 1.0443e-004 87.97 1 1 1 7.4460 4.6197 76.4268

Table 4. Performance measures of various transforms applied on Cameraman image

TRANSFORM
MSE PSNR SSIM NCC FOM

ENTROPY
ORIGINAL

ENTROPY
RESTORED CR

Db2 0.2084 54.9748 0.9999 1 0.9823 6.9719 2.2361 112.2192
Db10 0.2230 54.6820 0.9932 0.9999 0.9904 6.9719 2.4706 112.2192
Coif1 0.2091 54.9620 0.9939 0.9999 0.9851 6.9719 2.311.3 112.2192
Sym2 0.2084 54.9748 0.9939 1 0.9823 6.9719 2.3361 112.2192
dmey 0.2356 54.4423 0.9927 0.9999 0.9928 6.9719 2.2993 112.2192
dft+dmey 0.0043 71.7801 1 1 0.9996 6.9719 4.0204 112.2192
dft+sym2 0.0021 74.8502 1 1 0.9999 6.9719 4.1476 112.2192
dft+coif1 0.0016 76.0711 1 1 0.9999 6.9719 4.0397 112.2192
dft+db10 0.0030 73.4176 1 1 0.9998 6.9719 4.3971 112.2192
dft+db2 0.0021 74.8502 1 1 0.9999 6.9719 4.1476 112.2192

restored image will be of good quality. DFT applied with 
the wavelet COIF1 has the lowest MSE value when com-
pared with other transforms. PSNR value of the restored 
image should be high enough to say that image is of good 
quality, DFT with COIF1 wavelet has the highest PSNR 
value when compared with other transforms. The value 
of SSIM should fall between 0 and 1 for a reconstructed 
image. If the value is 1 then the reconstructed image is said 
to have a good structural similarity when compared to 
the original image. NCC illustrates the similarity between 
reconstructed image and the original image, if the value 
of NCC is 1 then reconstructed image is said to be simi-
lar to the original image. FOM defines preservation of 
edges, the edges of reconstructed image is said to be well 
preserved if the FOM value is closer to 1. The qualitative 
analysis of lena and cameraman images by applying vari-
ous cascaded image transforms are shown in Figure 4 and 
Figure 5 respectively.

5. Conclusion
Sparsity is the key role in compressive sensing which 
helps us to sample the given signal in information rate 
rather than the Nyquist rate. It is very useful in saving the 
bandwidth and also reduces the cost of transmitting high 
frequency sampled signal. To compress the given signal 
we need to represent it in a proper basis function or trans-
form. DFT is better for compressing 1D signal whereas 
DCT and DWT are suitable for compressing 2D signals. 
In this it is proved from the simulation results that DFT 
does better for 2D signals by varying the energy density 
range of the image. Also a cascaded image transform is 
proposed in this paper which cascades DFT and DWT. 
Performance measures of various cascaded image trans-
forms are analyzed to find which transform is best. DFT 
applied with the wavelet COIF1 has the lowest MSE value 
when compared with other transforms. It has the highest 
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PSNR value compared to other transforms which illus-
trates that the quality of the reconstructed image is good. 
The value of SSIM should fall between 0 and 1 for a recon-
structed image. If the value is 1 then the reconstructed 
image is said to have a good structural similarity when 
compared to the original image. DFT applied with the 
wavelet COIF1 applied on Lena and Cameraman image 
shows good structural similarity between original and 
reconstructed image. If the value of NCC is 1 then recon-
structed image is said to be similar to the original image. 
From the table it is understood that when DFT applied 
with COIF1 the reconstructed image is similar to the 
original image and also it edges are well preserved. DFT 
and COIF1 wavelet cascaded together is best to represent 
the given image in sparse.
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Figure 5. Original and the reconstructed 
Cameraman image by applying various cascaded 
image transform.

Figure 4. Original and the reconstructed Lena 
image by applying various cascaded image transform.


