# Production and Material Planning in the Push and Pull Integrated System for Routine Products and Customers' Orders 

Nima Pasha<br>Industrial Engineering, Tarbiat Modares University (TMU), Tehran, Iran


#### Abstract

In this article the push and pull production system is investigated and the proper policies are presented to facilitate the production of customers' orders and routine products. In this push and pull integrated manufacturing system we should choose the best production methods in different circumstances. Using linear programming is the method used to calculate the MPS and based on that MRP and SFC (for 4 weeks) are determined. Besides, the customers' orders and all the material needed are added to the plan. The production system and raw material preparation are different in push and pull systems and the best decision should be made to consume the investment efficiency and deliver the production as customers need. In addition, a cycle of receiving orders from sales department is suggested. The results of calculation the plans for MPS, MRP, SFC, customers' orders, etc. are determined. After calculating the MPS based on the push system, the orders are investigated for SFC and MRP system. Solving these models isn't easy and soluble unless useful and comprehensive methods are used. This is a job sequences production line which is push and pull integrated system.


Keywords: Assemble-to-order, Linear Programming, Matrix-BOM, MPS, SFC

## 1. Introduction

Production-oriented companies try to increase their productivity and reduce their costs so accurate plans can play a vital role for this purpose. As the matter of fact, in production systems, the timetable of workstations and their materials planning should be prepared by schedulers. In this article a production model with five workstations is clarified but the method of planning for each stage is different and they have a different SFC in proportion to the individual orders. The planning of the first and second stage is determined by push system but other workstations plans are organized based on the both push and pull systems. Albeit, the main purpose of this article is related to how we can integrated these types of plans with each other in SFC and MRP sheets. This model is an assemble-to-order model because the production systems has a wide-spread relationship with orders and pull system. Furthermore, this
is a job sequences model with different batch sizes. The flowchart below (Figure 1) shows the main six steps with a little description.

As the chart vividly illustrates, at first, MPS of this model is calculated based on the linear programming method. The number of production that are needed for each month are depend on different factors such as sales forecasting, primary inventory, safety stock, the cost of the products, etc. At the second step, the number of materials that are needed is calculated in order to complete the process. At the final step of push production system, SFC is calculated for each week. Next, the customers' orders should be considered (another plan based on pull system). So SFC and Material planning are changed. But this system should be well-organized and increased the flexibility of production line. Finally, all of these plans in both systems should be integrated in the SFC sheets and the output of Matrix-BOM. In addition, sufficient safety stock should be stored in the production line.

[^0]

Figure 1. Six main steps of solving a push and pull integrated method.

## 2. Literature Review

### 2.1 MPS Method

MPS is a plan to produce for production, staff, inventory, etc. This is related to the time and quantity. One of the purposes of MPS is optimizing the production lines. Besides, forecasting the future plans is another part of MPS (en.wikipedia.org/). Production-oriented companies have a lot of problems in combination with constantly changing process parameters that an accurate and correct plan can solve this ${ }^{1}$. There are a lot of factors that have effect on manufacturing system performance such as orders, limited resources, quality deterioration, machines, etc ${ }^{2}$. All of these factors are considered in MPS ${ }^{3}$ Planning and control provides the systems, sequences and policies which have different approach of both supply and demand ${ }^{4}$. There are a lot of model for production process management with external and internal risks such as demands, yield, capacity, etc. and they should be studied by operation researcher's ${ }^{5}$. Planning and Control is related to market needs and operation's resources ability or capacity ${ }^{4}$ and production planning and inventory control have been solved by production researchers and Simone was the first researcher who analyzes simple production-inventory systems ${ }^{6}$. In Spite of the fact that automation of production is very important, control systems should have the process information in real-time ${ }^{1}$.

Production planning structure is organized as the Table 1 shows:

The Figure 2 illustrates the MRP close-loop for a push production system ${ }^{7}$ :

Table 1. Production planning structure

| Resources | Capacity <br> Planning | Production <br> Planning | Planning |
| :--- | :--- | :--- | :--- |
| Manufacture | Resource <br> Requirement <br> Planning | Aggregate <br> Planning | Production |
| Critical Work <br> Center | Rough out <br> Capacity <br> Planning | Master <br> Production <br> Schedule | Final Product |
| Work Center | Capacity <br> Requirement <br> Planning | Material <br> Requirement <br> Planning | Part |
| Machines and <br> Equipment | Input-Output <br> Control | Shop Floor <br> Scheduling | Production <br> Operation |

### 2.2 Assemble-To-Order

An Assemble-To-Order (or ATO) system contains different kinds of components. To make the products some of these components are needed and the products are assembled in respond to demand (Song). In this method, there is a lot of variety of products. In final process of production, the products might be changed in proportion to orders and it leads to decrease the number of products in warehouse because when they are produced, they will delivery to the customers that ordered the production. Thus, it decreases the WIP and warehouse inventory ${ }^{7}$ and in this system production should concentrate on high volume ${ }^{8}$. The Figure 3 compares make-to-stock, assemble-to-stock and make-to-order with each other:

### 2.3 Material Planning and Inventory Control

Inventory costs contain different factors such as holding, ordering, shortage; setup costs ${ }^{9}$. There two types of multi


Figure 2. MRP close-loop.


Figure 3. Make-to-stock, assemble-to-stock and make-toorder systems.
period inventory system: fixed-order quantity model and fixed-time quantity model. In the first one, total annual cost is calculated:

Total cost annual cost $=$ Annual purchase cost + Annual ordering cost + Annual holding cost

$$
\mathrm{TC}=\mathrm{DC}+\mathrm{S} \cdot \frac{D}{Q}+\mathrm{H} \cdot \frac{Q}{2}
$$

TC = Total cost
$\mathrm{H}=$ Holding cost
$\mathrm{Q}=$ Quantity
$\mathrm{D}=$ Demand
C $=$ Cost per unit
S = Setup cost
$\xrightarrow{\text { Derive the } T C} Q^{*}=\sqrt{\frac{2 D S}{H}}$

$$
R O P=\mathrm{LT} \cdot \bar{d}
$$

$\bar{d}=$ Average daily demand

## LT $=$ Lead Time

The formula below shows the calculation of fixed-order quantity model with safety stock:


Figure 4. Basic fixed-order quantity model.

$$
R O P=\mathrm{LT} \cdot \bar{d}+\mathrm{SS}
$$

In the fixed-time period model, that inventory is calculated only at particular times, the order quantity is calculated as the formula below shows:

Order quantity $=$ Average demand over the vulnerable period + Safety stock - Inventory Current on hand

$$
\mathrm{q}=(\mathrm{LT}+\mathrm{T}) \cdot \bar{d}+\mathrm{SS}-\mathrm{I}
$$

$\mathrm{T}=$ the number of days between reviewers ${ }^{9}$

## 3. Proposed Methodology and Results

The production line contains 5 workstations. In spite of the fact that the first and second one are planned base on the push production system, sometimes customers' orders have effect on these workstations. The Figure 5 clarifies the method of planning in this model:

This production line is an electronic controlling system and it produces 4 different sorts of product ( $\mathrm{x} 1, \mathrm{x} 2$, x 3 , and x 4 ). All the stages in this model are calculated in basis of pull and push integrated method. The products of customers' orders are $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3$, and x 4 with a little


Figure 5. Push and pull integrated model.
change with different materials. In fact, for each order, just one or two materials might be changed.

### 3.1 MPS Calculation by the Linear Programing

The MPS of this model relates with the batch of orders, benefit of each product, project on hand, Available To Promise (ATP), the number of drives ordered, capacity of production line, the maximum number of sales requirement, etc. There are different kinds of hypothesis to calculate MPS such as:
a. Drives are consumed only in $x 1$ products (consumption factor $=1$ ).
b. The Table 2 shows data on the net-profit of each product:
c. The capacity of production line is 450 products per month.
d. The MPS is calculated for one month and SFC is based on this plan but it considers the plan for one week.

So, the linear programing is modeled and then is solved with software:
$\operatorname{Max} Z=30000 . x 1+5000 . x 2+4000 . x 3+1000 . x 4$
S.t: $\mathrm{x} 1<=$ the number of drives ordered +Inventory of drives

The number of customers' orders $\mathrm{x} 1<=\mathrm{x} 1$
The number of customers' orders $\mathrm{x} 2>=\mathrm{x} 2$
The number of customers' orders $\mathrm{x} 3>=\mathrm{x} 3$
Table 2. Net-profit of each product

| Products | Drive | net-profit |
| :--- | :---: | :---: |
| X 1 | YES | $\mathrm{C} 1=30000$ |
| X 2 | NO | $\mathrm{C} 2=5000$ |
| X 3 | NO | $\mathrm{C} 3=4000$ |
| X 4 | NO | $\mathrm{C} 4=1000$ |

The number of customers' orders $\mathrm{x} 4>=\mathrm{x} 4$
$\mathrm{X} 1+\mathrm{X} 2+\mathrm{X} 3<=$ Capacity of production line $=450$ products for each month

As the results show, solution value is the number of products that should be produced. Furthermore, the benefit of each product is calculated in Unit or Profit c (j). Besides, the below formula shows Total Contribution:

Total Contribution $=c(j) *(x 1+x 2+x 3+x 4)$
Albeit, there are different sorts of method to calculate ATP such as: discrete, without look ahead and with look ahead.

### 3.2 Raw Material Requirement Calculation (based on the Push System)

The results of MRP are the output of MPS and besides MPS, it needs several items such as Lead Time (LT), Minimum of Quantity (MOQ), Batch Size (BS), $\mathrm{Q}^{*}$, the average of goods consumption, etc. The output of MRP is Reorder Point (ROP). In this stage, at first, the MatrixBOM should be prepared based on the BOM of each 5 products. The diagram below shows the part name, their quantity and codes, etc. Then in the Matrix-BOM, all of the BOM for 4 products are integrated as in the Figure 6 is determined.

There are different sorts of data needed to solve this problem. The Table 4 shows the final Matrix-BOM:

At this time, the number of material that should be prepared for products is calculated.

The number of materials we need is calculated and the results are in the Table 5, although in the sixth stage the materials planning will be changed because of the customers' orders:

### 3.3 SFC for Workstation based on the MPS

When MPS was determined, each workstation needed to have a clear and precise plan in order to produce

Table 3. Results of MPS and details of that

|  | 15:48:52 |  | Friday | May | 16 | 2014 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Decision Variable | Solution Value | Unit Cost or Profit c[j] | Total Contribution | Reduced Cost | Basis Status | Allowable Min. c $[\mathbf{j}]$ | Allowable Max. cij |
| 1 | X1 | 250/0000 | 30،000/0000 | 7،500،000/0000 | 0 | basic | 4،000/0000 | M |
| 2 | X2 | 124/0000 | 5،000/0000 | 620،000/0000 | 0 | basic | 4،000/0000 | M |
| 3 | $\times 3$ | 76/0000 | 4,000/0000 | 304،000/0000 | 0 | basic | 0 | 5،000/0000 |
| 4 | X4 | 18/0000 | 1،000/0000 | 18،000/0000 | 0 | basic | 0 | M |
|  | Objective | Function | [Max.] = | 8،442،000/0000 |  |  |  |  |
|  | Constraint | Left Hand Side | Direction | Right Hand Side | Slack or Surplus | Shadow Price | Allowable Min. RHS | Allowable Max. RHS |
| 1 | C1 | 250/0000 | <= | 250/0000 | 0 | 26c000/0000 | 227/0000 | 326/0000 |
| 2 | C2 | 250/0000 | >= | 226/0000 | 24/0000 | 0 | -M | 250/0000 |
| 3 | C3 | 124/0000 | <= | 124/0000 | 0 | 1،000/0000 | 101/0000 | 200/0000 |
| 4 | C4 | 76/0000 | < | 99/0000 | 23/0000 | 0 | 76/0000 | M |
| 5 | C5 | 18/0000 | <= | 18/0000 | 0 | 1،000/0000 | 0 | M |
| 6 | C6 | 450/0000 | < | 450/0000 | 0 | 4،000/0000 | 374/0000 | 473/0000 |


|  |  | X1 | X2 | X3 | X4 | Slack_C1 | Surplus_C2 | Slack_C3 | Slack_C4 | Slack_C5 | Slack_C6 | Artificial_C2 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Basis | C(i) | 30,000/0000 | 5c000/0000 | 4،000/0000 | 1,000/0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | R. H. S. | Ratio |
| Slack_C1 | 0 | 1/0000 | 0 | 0 | 0 | 1/0000 | 0 | 0 | 0 | 0 | 0 | 0 | 250/0000 | 250/0000 |
| Artificial_C2 | -M | 1/0000 | 0 | 0 | 0 | 0 | -1/0000 | 0 | 0 | 0 | 0 | 1/0000 | 226/0000 | 226/0000 |
| Slack_C3 | 0 | 0 | 1/0000 | 0 | 0 | 0 | 0 | 1/0000 | 0 | 0 | 0 | 0 | 124/0000 | M |
| Slack_C4 | 0 | 0 | 0 | 1/0000 | 0 | 0 | 0 | 0 | 1/0000 | 0 | 0 | 0 | 99/0000 | M |
| Slack_C5 | 0 | 0 | 0 | 0 | 1/0000 | 0 | 0 | 0 | 0 | 1/0000 | 0 | 0 | 18/0000 | M |
| Slack_C6 | 0 | 1/0000 | 1/0000 | 1/0000 | 0 | 0 | 0 | 0 | 0 | 0 | 1/0000 | 0 | 450/0000 | 450/0000 |
|  | C(i)-Z(i) | 30،000/0000 | 5،000/0000 | 4،000/0000 | 1,000/0000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |  |
|  | ${ }^{*} \operatorname{Big} \mathrm{M}$ | 1/0000 | 0 | 0 | 0 | 0 | -1/0000 | 0 | 0 | 0 | 0 | 0 | 0 |  |


| asem_no | sta_no | sta_nam | com_qty | preplace |  |  |  | asem_no | sta_no | sta_nam | com_qty | preplace |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11040770 | 061398 | Board 1 | 1 |  |  |  |  | 11040770 | 061398 | Board 1 | 1 |  |
| 11040771 | 061398 | Board 2 | 1 |  |  |  |  | 11040771 | 061398 | Board 2 | 1 |  |
| 11040772 | 061398 | Board 3 | 1 |  |  |  |  | 11040772 | 061398 | Board 3 | 1 |  |
| 11040773 | 061398 | Board 4 | 1 |  |  |  |  | 11040773 | 061398 | Board 4 | 0 |  |
| 11040774 | 061398 | Board 5 | 1 |  |  |  |  | 11040774 | 061398 | Board 5 | 0 |  |
| 11040775 | 061398 | Drive | 1 | R1 |  |  |  | 11040775 | 061398 | Drive | 0 | R1 |
| 11040776 | 061398 | Contactor1 | 2 | R2 |  |  |  | 11040776 | 061398 | Contactor1 | 1 | R2 |
| 11040777 | 061398 | Contactor2 | 1 | R3 |  |  |  | 11040777 | 061398 | Contactor2 | 0 | R3 |
| 11040778 | 061398 | Box | 1 |  |  |  |  | 11040778 | 061398 | Box | 1 |  |
| 11040779 | 061398 | Screen | 1 |  |  |  |  | 11040779 | 061398 | Screen | 1 |  |
| 11040780 | 061398 | Wire | 1 |  |  |  |  | 11040780 | 061398 | Wire | 1 |  |
|  |  |  |  | $\triangle$ |  |  |  |  | $\swarrow$ | $7$ |  |  |
|  |  |  | asem_no | sta_no | sta_nam | A | B | C | D |  |  |  |
|  |  |  | 11040770 | 061398 | Board 1 | 1 | 1 | 1 | 1 |  |  |  |
|  |  |  | 11040771 | 061398 | Board 2 | 1 | 1 | 1 | 1 |  |  |  |
|  |  |  | 11040772 | 061398 | Board 3 | 1 | 1 | 0 | 0 |  |  |  |
|  |  |  | 11040773 | 061398 | Board 4 | 1 | 0 | 0 | 0 |  |  |  |
|  |  |  | 11040774 | 061398 | Board 5 | 1 | 0 | 0 | 1 |  |  |  |
|  |  |  | 11040775 | 061398 | Drive | 1 | 0 | 0 | 0 |  |  |  |
|  |  |  | 11040776 | 061398 | Contactor1 | 2 | 1 | 1 | 1 |  |  |  |
|  |  |  | 11040777 | 061398 | Contactor2 | 1 | 0 | 1 | 0 |  |  |  |
|  |  |  | 11040778 | 061398 | Box | 1 | 1 | 1 | 1 |  |  |  |
|  |  |  | 11040779 | 061398 | Screen | 1 | 1 | 1 | 1 |  |  |  |
|  |  |  | 11040780 | 061398 | Wire | 1 | 1 | 1 | 1 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| asem_no | sta_no | sta_nam | com_qty | preplace |  |  |  | asem_no | sta_no | sta_nam | com_qty | preplace |
| 11040770 | 061398 | Board 1 | 1 |  |  |  |  | 11040770 | 061398 | Board 1 | 1 |  |
| 11040771 | 061398 | Board 2 | 1 |  |  |  |  | 11040771 | 061398 | Board 2 | 1 |  |
| 11040772 | 061398 | Board 3 | 0 |  |  |  |  | 11040772 | 061398 | Board 3 | 0 |  |
| 11040773 | 061398 | Board 4 | 0 |  |  |  |  | 11040773 | 061398 | Board 4 | 0 |  |
| 11040774 | 061398 | Board 5 | 0 |  |  |  |  | 11040774 | 061398 | Board 5 | 1 |  |
| 11040775 | 061398 | Drive | 0 | R1 |  |  |  | 11040775 | 061398 | Drive | 0 | R1 |
| 11040776 | 061398 | Contactor1 | 1 | R2 |  |  |  | 11040776 | 061398 | Contactor1 | 1 | R2 |
| 11040777 | 061398 | Contactor2 | 1 | R3 |  |  |  | 11040777 | 061398 | Contactor2 | 0 |  |
| 11040778 | 061398 | Box | 1 |  |  |  |  | 11040778 | 061398 | Box | 1 |  |
| 11040779 | 061398 | Screen | 1 |  |  |  |  | 11040779 | 061398 | Screen | 1 |  |
| 11040780 | 061398 | Wire | 1 |  |  |  |  | 11040780 | 061398 | Wire | 1 |  |

Figure 6. The BOM of each product and Matrix-BOM.

Table 4. Matrix-BOM and essential data

| asem_no | sta_name | A | B | C | D | lead time(week) | MOQ | batch <br> Quantity | SS | average usage | ROP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X1 | X2 | X3 | X4 |  |  |  |  |  |  |
| 11040770 | Board 1 | 1 | 1 | 1 | 1 | 3 | 10 | 1 | 2 | 5 | 17 |
| 11040771 | Board 2 | 1 | 1 | 1 | 1 | 3 | 10 | 1 | 2 | 11/25 | 36 |
| 11040772 | Board 3 | 1 | 1 | 0 | 0 | 3 | 10 | 1 | 2 | 0 | 2 |
| 11040773 | Board 4 | 1 | 0 | 0 | 0 | 3 | 10 | 1 | 2 | 0 | 2 |
| 11040774 | Board 5 | 1 | 0 | 0 | 1 | 1 | 100 | 2 | 30 | 40 | 70 |
| 11040775 | Drive | 1 | 0 | 0 | 0 | 4 | 50 | 1 | 10 | 12/5 | 60 |
| 11040776 | Contactor1 | 2 | 1 | 1 | 1 | 4 | 50 | 1 | 10 | 1/25 | 15 |
| 11040777 | Contactor2 | 1 | 0 | 1 | 0 | 4 | 50 | 1 | 10 | 11/25 | 55 |
| 11040778 | Box | 1 | 1 | 1 | 1 | 4 | 50 | 1 | 10 | 5 | 30 |
| 11040779 | Screen | 1 | 1 | 1 | 1 | 4 | 50 | 1 | 10 | 7/5 | 40 |
| 11040780 | Wire | 1 | 1 | 1 | 1 | 4 | 50 | 1 | 10 | 25 | 110 |


|  | Material |
| :---: | :---: |
| Baseline | Required |
| Date | (Date) |


the process of production in proportion to that. Thus, MPS plan should be divided to four distinguish plans for each week and they are clarified by the wardens to the workers. These plans are calculated based on the orders that sales department needed for customers. Thus, the MPS shows the plan of each product for the first workstations.

### 3.4 Customers' Orders Receiving from Sales Department

Besides the routine orders, sales department need some specific products that their materials and structures are different from the routine one. So, production planner should consider these plans and prepare all the

Table 5. The number of materials for purchasing

| asem_no | sta_name | A | B | C | D | lead time | MOQ | SS | average usage | ROP | Date | Inventory |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | X1 | X 2 | X3 | X4 |  |  |  |  |  |  |  |
|  |  | 250 | 124 | 76 | 18 |  |  |  |  |  |  |  |
| 11040770 | Board 1 | 1 | 1 | 1 | 1 | 3 | 10 | 2 | 5 | 257 | 776 | 213 |
| 11040771 | Board 2 | 1 | 1 | 1 | 1 | 3 | 10 | 2 | 11/25 | 395 | 1196 | 0 |
| 11040772 | Board 3 | 1 | 1 | 0 | 0 | 3 | 10 | 2 | 0 | 376 | 1128 | 0 |
| 11040773 | Board 4 | 1 | 0 | 0 | 0 | 3 | 10 | 2 | 0 | 218 | 654 | 34 |
| 11040774 | Board 5 | 1 | 0 | 0 | 1 | 1 | 100 | 30 | 40 | 296 | 336 | 2 |
| 11040775 | Drive | 1 | 0 | 0 | 0 | 4 | 50 | 10 | 12/5 | 249 | 1009 | 11 |
| 11040776 | Contactor1 | 2 | 1 | 1 | 1 | 4 | 50 | 10 | 1/25 | 638 | 2553 | 14 |
| 11040777 | Contactor2 | 1 | 0 | 1 | 0 | 4 | 50 | 10 | 11/25 | 215 | 871 | 46 |
| 11040778 | Box | 1 | 1 | 1 | 1 | 4 | 50 | 10 | 5 | 367 | 1473 | 36 |
| 11040779 | Screen | 1 | 1 | 1 | 1 | 4 | 50 | 10 | 7/5 | 368 | 1480 | 35 |
| 11040780 | Wire | 1 | 1 | 1 | 1 | 4 | 50 | 10 | 25 | 401 | 1629 | 2 |

Table 6. SFC for each week based on MPS

| product name | Inventory |  | week |  |  |  | total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 1 | 2 | 3 | 4 |  |
| A | 30 | forecast | 20 | 110 | 200 | 50 | 380 |
|  |  | Backlog | 10 | 10 | 5 | 15 | 40 |
|  |  | total demand | 30 | 120 | 205 | 65 | 420 |
|  |  | POH | 0 | 0 | -85 | -130 | -215 |
|  |  | MPS |  | 120 | 120 | 20 | 260 |
|  |  | ATP: D | -30 | 110 | 75 | -35 | 120 |
| B | 30 | forecast | 10 | 60 | 10 | 30 | 110 |
|  |  | Backlog | 40 | 0 | 30 | 30 | 100 |
|  |  | total demand | 50 | 60 | 40 | 60 | 210 |
|  |  | POH | -10 | -10 | -20 | -50 | -90 |
|  |  | MPS | 10 | 60 | 30 | 30 | 130 |
|  |  | ATP: D | -100 | 60 | -100 | -100 | -240 |
| C | 0 | forecast | 20 | 25 | 10 | 15 | 70 |
|  |  | Backlog | 5 | 5 | 0 | 0 | 10 |
|  |  | total demand | 25 | 30 | 10 | 15 | 80 |
|  |  | POH | -15 | -15 | 5 | -4 | -29 |
|  |  | MPS | 10 | 30 | 30 | 6 | 76 |
|  |  | ATP: D | -10 | 25 | 20 | -4 | 31 |
| D | 10 | forecast | 0 | 5 | 0 | 4 | 9 |
|  |  | Backlog | 0 | 10 | 5 | 0 | 15 |
|  |  | total demand | 0 | 15 | 5 | 4 | 24 |
|  |  | POH | 10 | 0 | -5 | -4 | 1 |
|  |  | MPS |  | 5 |  | 5 | 10 |
|  |  | ATP: D | -15 | -20 |  | -10 | -45 |

materials as well as routine one. These products should be delivered to customers without any delay even its justifiable. E-KANBAN is a popular method to transfer this information for another department such as planning and production management as soon as possible. In addition, these orders shouldn't have any mistake because it misleads production department and they spend a lot of resources for unnecessary products. So, accuracy and quickness to transfer this information play a vital role for production. After receiving this information by production and manufacturing department they should prepare all the materials and produce the orders in proportion to customers' needs. This stage is very important and has a lot of influence on customers' satisfaction. Thus, a vivid duty for the entire department should be prepared in order to accelerate all of these workflows. The flowchart below (Figure 7) illustrates a suggestion workflow to transfer customers' orders until delivery the products.

In this model, this sheet contains the power and name of drive, the method of connection to engine and the stops of system, etc. So, in proportion to this information, drive, board and contactor will be changed. Now, a specific sheet which is received from sales department is investigated. It leads some changes that Table 7 shows them certainly:

### 3.5 Final Raw Material Requirement Calculation (base on the Both Systems)

As in the previous stage, all the materials that we need for customers' orders are calculated based on the production quantity, now the raw materials preparation should be


Figure 7. Cycle of receiving the orders from sales department.

Table 7. Rudiment needs for orders

| asem_name | Rudiment Needs |
| :--- | :---: |
| Board 1 | 1 |
| Board 2 | 0 |
| Board 3 | 0 |
| Board 4 | 0 |
| Board 5 | 0 |
| Drive | 0 |
| Contactor1 | 0 |
| Contactor2 | 0 |
| Box | 0 |
| Screen | 0 |
| Wire | 0 |
| Board X | 4 |
| Board Y | 3 |
| Drive X | 5 |

calculated and announced to supplier or other related departments. In this method, we consider both stages 3.2 and 3.4 results and the formula below suggests solving this types of integrated model:

ROP $=($ Quantity of consumption $*$ MPS $)$ - Inventory + Material Storage - Orders + Safety Stock + rudiment needs

The Table 8 clarifies information on the final ROP that should be ordered at this time (after receiving the sales orders).

### 3.6 Final SFC Calculation based on the Third and Fourth Step

In this step, the priority between the products is determined. If a correct priority based on the sales needs between all of the products is defined, the cost of churners will be declined without any high pressure to production team. There is a lot of method to determine this sequence. The sequences between batches in job sequences is related to "Run Out Time" which is calculated based on the below formula:

$$
\text { Run Out Time }=\frac{\text { Inventory }}{\text { Consumption Rate }}
$$

Batch sizes are another factor that should be considered in this model. The Table 9 shows information on the initial specification of each batch size and production to solve and determine the sequences between them.

Now, sufficient time for demand should be investigated by $\frac{\text { Weekly Demand }}{\text { Weekly Cepacity }}$ formula.

Table 8. Final results of raw materials planning

| asem_no | sta_nam | A | B | C | D | Rudiment <br> Needs | lead time <br> (week) | MOQ | SS | average <br> usage | ROP1 | Date | Inventory <br> Final <br> ROP for 8 <br> weeks <br> 11040770 Board 1 | 1 |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 1 | 3 | 10 | 2 | 5 | 257 | 776 | 213 | 265 |  |  |
| 11040771 | Board 2 | 1 | 1 | 1 | 1 | 0 | 3 | 10 | 2 | $11 / 25$ | 395 | 1196 | 0 | 395 |
| 11040772 | Board 3 | 1 | 1 | 0 | 0 | 0 | 3 | 10 | 2 | 0 | 376 | 1128 | 0 | 376 |
| 11040773 | Board 4 | 1 | 0 | 0 | 0 | 0 | 3 | 10 | 2 | 0 | 218 | 654 | 34 | 218 |
| 11040774 | Board 5 | 1 | 0 | 0 | 1 | 0 | 1 | 100 | 30 | 40 | 296 | 336 | 2 | 296 |
| 11040775 | Drive | 1 | 0 | 0 | 0 | 0 | 4 | 50 | 10 | $12 / 5$ | 249 | 1009 | 11 | 249 |
| 11040776 | Contactor1 | 2 | 1 | 1 | 1 | 0 | 4 | 50 | 10 | $1 / 25$ | 638 | 2553 | 14 | 638 |
| 11040777 | Contactor2 | 1 | 0 | 1 | 0 | 0 | 4 | 50 | 10 | $11 / 25$ | 215 | 871 | 46 | 215 |
| 11040778 | Box | 1 | 1 | 1 | 1 | 0 | 4 | 50 | 10 | 5 | 367 | 1473 | 36 | 367 |
| 11040779 | Screen | 1 | 1 | 1 | 1 | 0 | 4 | 50 | 10 | $7 / 5$ | 368 | 1480 | 35 | 368 |
| 11040780 | Wire | 1 | 1 | 1 | 1 | 0 | 4 | 50 | 10 | 25 | 401 | 1629 |  | 401 |
| 11040781 | Board X | 0 | 0 | 0 | 0 | 4 | 3 | 1 | 2 | 2 | 0 | 1256 | 57 | 32 |
| 11040782 | Board Y | 0 | 0 | 0 | 0 | 3 | 3 | 1 | 2 | 2 | 0 | 156 | 5 | 24 |
| 11040783 | Drive X | 0 | 0 | 0 | 0 | 5 | 3 | 1 | 2 | 2 | 0 | 127 | 2 | 40 |

Table 9. Production information for sequences calculation

| Products | Q $^{*}$ | Weekly <br> Capacity | Time of Q* <br> - Week | Weekly <br> Demand | Inventory |
| :--- | :---: | :---: | :---: | :---: | :---: |
| A | 8 | 30 | 1.1 | 11 | 30 |
| B | 5 | 25 | 1 | 4 | 30 |
| C | 4 | 30 | 1 | 3 | 2 |
| D | 5 | 45 | 0.5 | 3 | 10 |
| A1 | 4 | 10 | 1.3 | 2 | 2 |
| A2 | 2 | 13 | 1.1 | 2 | 0 |
| B1 | 2 | 14 | 0.8 | 1 | 1 |
| D1 | 2 | 14 | 0.9 | 1 | 1 |

Sufficient time for the demand of product "A" in one week $=\frac{11}{30}=0.36$

Sufficient time for the demand of product "B" in one week $=\frac{4}{25}=0.16$

Sufficient time for the demand of product "C" in one week $=\frac{3}{30}=0.1$

Sufficient time for the demand of product "D" in one week $=\frac{3}{45}=0.06$

Sufficient time for the demand of product "A1" in one week $=\frac{2}{10}=0.2$

Sufficient time for the demand of product "A2" in one week $=\frac{2}{13}=0.15$

Sufficient time for the demand of product "B1" in one week $=\frac{1}{14}=0.07$

Sufficient time for the demand of product "D1" in one week $=\frac{1}{14}=0.07$

Total time for demands $=0.36+0.53+0.33+0.2$ $=0.99$

As the total capacity time for demands is less than 1, it means there is enough time to responsible for all the demand. But the sequences between them are very important.

The sum of batch size is $=1.1+1+1+0.5+1.3+1.1$ $+0.8+0.9=5.9$ week

Now, the continuance time for each product should be calculated. The Table 10 shows continuance time based on the

## Inventory

## Weekly Demand

As the results show, the continuance time of A2 product is less than others. So, A2 should be produced

Table 10. Continuance time for each product

| Products | A | B | C | D | A1 | A2 | B1 | D1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Continuance time | $\frac{30}{11}=2.72$ | $\frac{30}{4}=7.5$ | $\frac{2}{3}=0.66$ | $\frac{10}{3}=3.33$ | $\frac{1}{2}=0.5$ | $\frac{0}{2}=0$ | $\frac{1}{1}=1$ | $\frac{1}{1}=1$ |

at first because of the high priority. After A2, C should be produced. The Table 11 shows the continuance time for each batch:

As the results show, at the next stage B1, D1 and A1 should be produced (equal to $\mathrm{Q}^{*}$ ). This priority is determined by their continuance time.

Table 11. Continuance time for each product

| Products | Inventory | continuance <br> time-week |
| :--- | :--- | :---: |
| A | $30-11(0.8)$ | 21.2 |
| B | $30-4(0.8)$ | 25.8 |
| C | $2-3(0.8)+4$ | 3.9 |
| D | $10-3(0.8)$ | 7.6 |
| A1 | $2-2(0.8)$ | 0.4 |
| A2 | $0-2(0.8)+4$ | 2.4 |
| B1 | $1-1(0.8)$ | 0.2 |
| D1 | $1-1(0.8)$ | 0.2 |

## 4. Conclusion

Production and material planning are one of the most important parts of the manufacturing systems. If the best method for each production system isn't chosen, that system will encounter to a lot problems such as increasing their costs, shortage of material, unjustifiable delays, etc. So, production managers should consider this major as an important and essential part of their system. It's imperative to consider the best methods for planning in proportion to each production systems. In this model,
an integrated method is clarified in order to increase the responsibility of production department for both their routine and customers' orders. All of the results in stage $3.5-3.6$ are calculated for both types of push and pull systems. Furthermore, all of the restrictions are considered in order to improve the productivity and use the resources efficiency.

## 5. References

1. Scholz-Reiter B. Autonomously controlled production systems-Influence of autonomous control level on logistic performance. Elsevier; 2009. p. 15-28.
2. Dhouib K. Joint optimal production control/preventive maintenance policy for imperfect process manufacturing cell. Int J Production Economics. 2012; 137:126-36.
3. Nabovvaty H. An applicable approach to production planning. Nash Farhang Rouz; 2010. p. 18-28.
4. Slack N. Operations Management. Prentice Hall; 2007; 8:200-10.
5. Chen C. Environmental safety stock: The impacts of regulatory and voluntary control policies on production planning, inventory control, and environmental performance. European Journal of Operational Research. 2010; 3(8): 159-63.
6. Aggelogiannaki E. An adaptive model predictive control configuration for production-inventory systems. Science Direct. 2008; 5(12):168-72.
7. Makuei A. An introduction to production planning. Nashr Danesh Parvar; 2003. p. 16-28.
8. Vallspir B. Advances in production management systems. IFIP. 2009; 2(5):62-72.
9. Chase R. Operation management for competitive advantage. 2006. p. 11-20.

[^0]:    *Author for correspondence

