Effect of Phosphorus Enriched Vermicompost on Growth and Yield of Groundnut (*Arachis hypogaea* L.) as Influenced by Soil Phosphorus use Efficiency

Tapas Das^{*}, Pushpajit Debnath, S. B. Satpute and S. Bandyopadhyay

Department of Agronomy, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar - 736 165, West Bengal, India; tapas11das@gmail.com, pdubkv@gmail.com, sushil.satpute@yahoo.com, banerjees_ubkv@rediffmail.com

Abstract

The experiment was carried out at the farm of Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal from August to October of 2011-12 and 2012-13, respectively. To investigate the effect of phosphorus enriched vermicompost on yield of ground nut under irrigated conditions. The experiment was laid out in a RBD design with 14 treatments which replicated thrice. Highest pod yield was obtained from T_7 , that receiving 150% phosphorus through rockphosphate enriched vermicompost grade-I) (2400.50 kg ha⁻¹) whereas, the treatment receiving 100% recommended dose through sole application of chemical fertiliser (T_1) (1479.00 kg ha⁻¹) was lowest yield. Dry matter accumulation increased significantly with crop age. Pooled data revealed that T_7 (4402.86 g m⁻²) performed better in all sampling days. The lowest Dry matter accumulation was observed in T_1 (1096.66 g m⁻²). The treatment T_7 recorded the highest value (4.02) of LAI at 75DAS and thereafter declined towards maturity. The highest value of 100-pod weight,100-kernel weights and harvest index were recorded in T_7 respectively (93.22 gm) (63.56 gm) and. (44.04%).It was observed that haulm yield of T_4 recorded highest value of haulm yield (3541.10 kg ha⁻¹) and T_8 recorded lowest value of haulm yield (3159.00 kg ha⁻¹). Pooled data revealed that T_7 has highest (86.43%) shelling out and T_1 has the lowest value (57.84%). Among the Phosphorus use efficiency, Highest Partial factor of productivity and Agronomic efficiency were observed in T_5 respectively (55.21 kg ha⁻¹) and (29.99 kg ha⁻¹). Apparent recovery was highest in T_7 (306.46%) and maximum value of Physiological use efficiency was noticed in T_4 (26.23 kg ha⁻¹).

Keywords: 100-pod Weight, 100-Kernel Weight, Dry Matter Accumulation, Groundnut, Haulm Yield, LAI, Phosphorus Enriched Vermicompost, Phosphorus use Efficiency, Pod Yield

1. Introduction

The agro-climatic condition of terai zone is very much conducive for groundnut cultivation but soil constraints are there which prevent the farmers from taking some positive outlook about cultivation of this crop. Soil of North Bengal is mostly acidic which aggravates the problem of fixation of phosphorus and lower availability of micro-nutrients like zinc, boron etc. (Mandal, 1989), which leads to improper nodulation and poor yield of number of pulse and oilseed crops under the Fabaceae family. The efficiency of utilization of phosphatic fertilizer is very low (20-25 %) due to chemical fixation in soil. Besides, native soil phosphorus is mostly unavailable to crops because of its low solubility. Further there is build up of insoluble phosphates in soil where phosphatic

*Author for correspondence

fertilizers have been applied over long periods. Hence, to reduce the phosphorus fixation in soil and to enhance the efficiency of the applied phosphatic fertilizer and to keep phosphorus more timely available to crops, organic matter plays a great role. Increasing plant biomass production per unit cropped area, increasing biomass return per unit to cropped area and decreasing soil organic matter loss have been identified as the major considerations to maintain the soil organic matter balance. Therefore, there is a need to develop viable technology to increases the Phosphorus use efficiency of inorganic P-fertilizer and yield through of enriched vermicompost.

2. Materials and Methods

The experiment was carried out at the farm of Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal from August to October of 2011-12 and 2012-13, respectively. To investigate the effect of phosphorus enriched vermicompost on yield of ground nut under irrigated conditions.

The experiment was laid out in a RBD design with 14 treatments which replicated thrice viz., Grade-I = 2%rockphosphate and Grade-II = 3% rock phosphate; T₁ = 100% Phosphorus through SSP, $T_2 = 75\%$ Phosphorus through SSP + 25% Phosphorus through enriched vermicompost (Grade I), $T_3 = 50\%$ Phosphorus through SSP + 50% Phosphorus through enriched vermicompost (Grade I), $T_4 = 25\%$ Phosphorus through SSP + 75% Phosphorus through enriched vermicompost (Grade I), $T_5 = 100\%$ Phosphorus through enriched vermicompost (Grade I), $T_6 = 125\%$ Phosphorus through enriched vermicompost (Grade I), $T_7 = 150\%$ Phosphorus through enriched vermicompost (Grade I), $T_s = 75\%$ Phosphorus through SSP + 25% Phosphorus through enriched vermicompost (Grade II), $T_0 = 50\%$ Phosphorus through SSP + 50% Phosphorus through enriched vermicompost (Grade II), $T_{10} = 25\%$ Phosphorus through SSP + 75% Phosphorus through enriched vermicompost (Grade II), $T_{11} = 100\%$ Phosphorus through enriched vermicompost (Grade II), $T_{12} = 125\%$ Phosphorus through enriched vermicompost (Grade II), $T_{13} = 150\%$ Phosphorus through enriched vermicompost (Grade II), T_{14} = control plot.

The total content in the selected vermicompost were determined and the calculated quantity of each enriched vermicompost was taken separately and mixed well with single superphosphate to make exactly the double the quantity of phosphorus in each vermicompost. Single superphosphate mixed vermicompost was filled separately in polyethylene bag and required quantity of water was added to each bag to maintain moist condition (50% of maximum water retention capacity of the manure). These bags were kept for a period of one month by adding water as per the requirement to maintain uniform moisture level in the entire incubated time. After the incubation period of 30 days all these vermicompost were dried and applied to soil.

3. Results and Discussion

The ground nut yield in control plot was 1008.85 kg ha⁻¹ (Table 1) (Figure 1). Addition of P-enriched vermicompost increased the grain yield significantly to 2400.50 kg ha⁻¹.

Highest pod yield was obtained from T_7 , that receiving 150% phosphorus through rockphosphate enriched vermicompost grade-I (2400.50 kg ha⁻¹) whereas, the treatment receiving 100% recommended dose through sole application of chemical fertiliser (T_1) (1479.00 kg ha⁻¹) was lowest yield. T_7 (150% phosphorus through rockphosphate enriched vermicompost grade-I) was followed by T_6 (125% phosphorus through rockphosphate enriched vermicompost grade-I) and T_5 (100% phosphorus through rockphosphate enriched vermicompost grade-I) which were at par with each other Rasal et al.¹², Raj et al.¹¹, Ghosh et al.⁷, Saha and Hajra¹⁵ and a number of authors experienced the higher pod yield of groundnut and other crops due to application of rockphosphate enriched compost over chemical fertiliser alone.

Dry matter accumulation (Table 2) (Figure 2) increased significantly with crop age. Sastry et al.¹⁶ also recorded progressive increase in dry matter up to harvest of groundnut. From the destructive samplings at all the stages it was noticed that, treatment T_{z} (150% phosphorus through rockphosphate enriched vermicompost grade-I) recorded higher dry matter accumulation than T_{13} (150% rockphosphate enriched vermicompost grade-II). Treatment T₁ (100% phosphorus through SSP) i.e., sole application of chemical fertiliser at recommended dose recorded lowest values of dry matter accumulation in almost all sampling. The higher vegetative growth might be achieved by greater amount of available phosphorus in soil at important stages of growth, i.e., at 45 and 60 DAS (Table 4) which probably enabled the plant to grab higher amount of nutrient from the soil with greater root rhizosphere. Bhawalkar³ experienced that vermicompost contains more number of N-fixing, P-solubilizing

Treatments	Poc	l yield (kg h	a⁻¹)
	2012	2013	Pooled
$T_1 = 100\%$ Phosphorus through SSP	1384.00	1574.00	1479.00
$\rm T_{_2}$ =75% Phosphorus through SSP + 25% Phosphorus through enriched vermicompost (Grade I)	1620.00	1767.00	1693.50
$\rm T_{_3}$ =50% Phosphorus through SSP + 50% Phosphorus through enriched vermicompost (Grade I)	1908.00	2157.00	2032.50
$\rm T_4$ =25% Phosphorus through SSP + 75% Phosphorus through enriched vermicompost (Grade I)	2150.00	2220.00	2185.00
$\rm T_{_5}$ =100% Phosphorus through enriched vermicompost (Grade I)	2154.00	2263.00	2208.50
$\rm T_6=125\%$ Phosphorus through enriched vermicompost (Grade I)	2157.00	2300.00	2228.50
$T_7 = 150\%$ Phosphorus through enriched vermicompost (Grade I)	2381.00	2420.00	2400.50
$\rm T_{_8}$ =75% Phosphorus through SSP + 25% Phosphorus through enriched vermicompost (Grade II)	1511.00	1675.00	1593.00
$\rm T_9$ =50% Phosphorus through SSP + 50% Phosphorus through enriched vermicompost (Grade II)	1854.00	2077.00	1965.50
$\rm T_{_{10}}$ =25% Phosphorus through SSP + 75% Phosphorus through enriched vermicompost (Grade II)	1897.00	2107.00	2002.00
T_{11} =100% Phosphorus through enriched vermicompost (Grade II)	2077.00	2174.00	2125.50
T_{12} =125% Phosphorus through enriched vermicompost (Grade II)	2078.00	2190.00	2134.00
T_{13} =150% Phosphorus through enriched vermicompost (Grade II)	2097.67	2210.00	2153.83
T ₁₄ =control plot	1027.70	990.00	1008.85
SEm.(±)	118.69	98.58	167.63
CD (0.05)	345.03	286.58	487.28
CV (%)	10.95	8.5	9.06

inter in Enert of forphosphate enficience verificompost on yield of groundhat at harves

Figure 1. Effect of rockphosphate enriched vermicompost on pod yield (kg ha⁻¹) of ground nut.

and other beneficial microbes, antibiotics, vitamins, hormones, enzymes etc. which have better effects on growth and yield of plants. Gosh and Das Gupta⁸, Roopadevi et al.¹⁴ experienced similar result.

There was an increasing trend of LAI (Table 3) (Figure 3) values up to 75 DAS and thereafter declined towards maturity, probably due to senescence of lower leaves. Pooled analysis of data from each sampling showed

that at 75 DAS the LAI was higher in T₇ (150% phosphorus through rockphosphate enriched vermicompost grade-I) (4.02) and T₁₃ (150% rockphosphate enriched vermicompost grade-II)(6.55) among organic treatment. Both the organic treatment T₇ (150% phosphorus through rockphosphate enriched vermicompost grade-I) (4.02) and T₁₃ (150% rockphosphate enriched vermicompost grade-II) had higher LAI than sole chemical treatment

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Treatments		At 15 DA	S	Ł	4t 30 DA5		7	At 45 DA:	S		At 60 DA:	S		At 75DAS	
T 20.85 21.32 21.31.00 21.31.100 21.31.00 21.31.100 21.31.00 21.32.00		2012	2013	pooled	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T	20.85	21.85	21.35	86.96	93.45	90.21	126.70	139.93	133.32	293.17	321.30	307.23	1007.63	1185.697	1096.663
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathrm{T}_{_2}$	22.14	23.17	22.65	89.86	96.55	93.21	130.46	154.90	142.68	315.50	328.90	322.20	1297.667	1328.497	1313.082
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T_{3}	24.42	25.45	24.94	96.93	102.95	99.94	139.30	172.47	155.88	360.90	403.73	382.32	1397.697	1672.197	1534.947
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathrm{T}_{_4}$	25.91	27.25	26.58	113.52	119.37	116.45	150.42	192.50	171.46	390.50	448.60	419.55	1472.297	1687.597	1579.947
T 2887 3044 29.46 13.637.4 04.80 184.27 528.20 58.55 56.688 1939.667 2177 20333333 T 37.78 3907 38.42 136.33 143.70 140.02 173.67 206.10 189.38 580.30 62.45 66.240 211.1097 236.1997 241.57 T 2357 23.66 09.011 91.59 90.85 128.44 155.80 130.33 383.20 361.90 149.007 135.4997 1253.897 149.047 T 23551 26.60 10.21 35.61 01.41 144.64 189.10 66.67 40.2.07 155.6997 155.8977 155.6977 145.9077 155.6843 T 2551 26.62 26.60 104.61 112.08 183.41 155.687 30.269 155.6407 155.6497 155.6497 155.6497 155.6497 155.6497 155.6497 155.6497 155.6497 155.6497 155.6497 155.6497 156.6497 155	T_5	28.64	29.79	29.21	125.09	131.98	128.54	151.08	193.10	172.09	524.40	578.80	551.60	1823.297	1957.397	1890.347
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	T_6	28.87	30.04	29.46	130.80	137.45	134.13	163.74	204.80	184.27	528.20	585.57	556.88	1939.667	2127	2033.333
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\mathrm{T}_{_{7}}$	37.78	39.07	38.42	136.33	143.70	140.02	173.67	206.10	189.88	580.30	624.50	602.40	2121.097	2361.997	2241.547
$ \begin{array}{rcccccccccccccccccccccccccccccccccccc$	T_{s}	21.55	22.57	22.06	90.11	91.59	90.85	128.44	155.80	142.12	303.83	328.90	316.37	1109.197	1205.397	1157.297
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T_{9}	22.57	23.61	23.09	89.36	96.35	92.86	132.83	135.17	134.00	320.53	361.20	340.87	1389.997	1528.097	1459.047
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T_{10}	23.54	24.60	24.07	93.56	100.23	96.90	134.92	163.20	149.06	331.70	382.30	357.00	1402.697	1648.997	1525.847
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$T_{_{11}}$	25.19	26.00	25.60	100.57	107.23	103.90	144.13	184.80	164.47	372.80	426.00	399.40	1426.797	1670.063	1548.43
$ T_{1}^{13} = 25.88 = 26.43 = 101.52 = 108.10 = 104.81 = 144.64 = 189.10 = 166.87 = 402.10 = 421.87 = 411.98 = 1457.397 = 1554.197 = 1584.197 = 1894.1 = 1894.1 = 1993 = 1944 = 8556 = 87.86 = 86.71 = 125.58 = 138.00 = 131.79 = 268.30 = 300.89 = 284.60 = 92.3333 = 1023.647 = 100799 = 56.8 = 6.801 = 0.20 = 17.49 = 174 = 12 = 8.68 = 7.11 = 5.97 = 6.15 = 6.34 = 13.57 = 6.30397 = 87.418 = 39.53 = 0.20 (0.05) = 6.788 = 6.801 = 0.20 = 17.49 = 174 = 12 = 8.68 = 7.21 = 5.97 = 6.15 = 6.34 = 2.52 = 5.24.11 = 120.785 = 0.20 = 0.56 = 15.46 = 0.36 = 10 = 9.54 = 112 = 8.68 = 7.21 = 5.97 = 6.15 = 6.34 = 2.52 = 7.536 = 9.32 = 3.639 = 0.20 (0.05) = 6.08 = 10 = 0.54 = 112 = 8.68 = 7.21 = 5.97 = 6.15 = 6.34 = 2.52 = 7.536 = 9.32 = 3.639 = 0.000 = 0.54 = 1000 = 0.54 = 112 = 8.68 = 7.21 = 5.97 = 6.15 = 6.34 = 2.52 = 7.536 = 9.32 = 3.639 = 0.000 = 0.000 = 0.54 = 112 = 8.68 = 7.21 = 5.97 = 6.15 = 6.34 = 2.52 = 7.536 = 9.32 = 3.639 = 0.000 = 0.$	T_{12}	25.51	26.62	26.06	104.61	112.08	108.34	145.05	187.50	166.28	385.30	429.40	407.35	1445.997	1687.93	1566.963
$ T_{14} = 18.94 = 19.93 = 19.44 = 85.56 = 87.86 = 86.71 = 125.58 = 138.00 = 131.79 = 268.30 = 300.89 = 284.60 = 92.3333 = 1023.647 = 1007.99 \\ SEm.(\pm) = 2.3351 = 3.3087 = 0.07 = 5.95 = 6.02 = 0.90 = 7.13 = 7.19 = 6.65 = 13.64 = 18.53 = 7.27 = 63.0397 = 87.418 = 39.53 \\ CD (0.05) = 6.788 = 6.801 = 0.20 = 17.49 = 17.49 = 2.76 = 20.72 = 20.89 = 20.32 = 39.65 = 45.15 = 22.06 = 183.25 = 254.11 = 120.785 \\ CV (\%) = 16.096 = 15.461 = 0.36 = 10 = 95.4 = 1.2 = 8.68 = 7.21 = 5.97 = 6.15 = 6.34 = 2.52 = 7.536 = 9.32 = 3.639 \\ CV (\%) = 16.096 = 17.40 = 0.954 = 1.2 = 8.68 = 7.21 = 5.97 = 6.15 = 6.34 = 2.52 = 7.536 = 9.32 = 3.639 \\ CV (\%) = 16.096 = 17.40 = 0.96 = 1.2 = 8.68 = 7.21 = 5.97 = 6.15 = 6.34 = 2.52 = 7.536 = 9.32 = 3.639 \\ CV (\%) = 16.096 = 10000 = 10000 = 12000 = 10000 = 12000 = $	$T_{_{13}}$	25.88	26.98	26.43	101.52	108.10	104.81	144.64	189.10	166.87	402.10	421.87	411.98	1457.397	1650.997	1554.197
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\mathrm{T}_{\mathrm{_{14}}}$	18.94	19.93	19.44	85.56	87.86	86.71	125.58	138.00	131.79	268.30	300.89	284.60	992.3333	1023.647	1007.99
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SEm.(±)	2.3351	3.3087	0.07	5.95	6.02	06.0	7.13	7.19	6.65	13.64	18.53	7.27	63.0397	87.418	39.53
CV (%) 16.096 15.461 0.36 10 9.54 1.2 8.68 7.21 5.97 6.15 6.34 2.52 7.536 9.32 3.639	CD (0.05)	6.788	6.801	0.20	17.49	17.49	2.76	20.72	20.89	20.32	39.65	45.15	22.06	183.25	254.11	120.785
Dry matter accumulation (90000 120000 120	CV (%)	16.096	15.461	0.36	10	9.54	1.2	8.68	7.21	5.97	6.15	6.34	2.52	7.536	9.32	3.639
Dry matter accumulation 200000 200000 200000 15DAS 15														Г		
2000 0 120 DAS 120 DAS 120 DAS 120 DAS 130 000 15 DAS 15 DAS 15 DAS 15 DAS 15 DAS 15 DAS 15 DAS 15 DAS					12000	- -										
120 DAS 90 DAS 90 DAS 75 DAS 2000 00 0 15 DAS 15 DAS 15 DAS 15 DAS 15 DAS 15 DAS				noit	10000	_										
75DAS 75DAS				ejnu	0008				(1	20 DAS) DAS			
60 DAS 60 DAS 45 DAS 2000 0 1 30 DAS 15 DAS				unə:	-5 6							1 7	SDAS			
2000 45 UAS				r 96	009 u 6	,						- - -) DAS			
2000 - 15 DAS				əttı) 400(-						4 6	o DAS			
				2 U	2000	-							5 DAS			
				Λıς	,											

Figure 2. Effect of rockphosphate enriched vermicompost on dry matter accumulation (g m⁻²) at different developmental stages of ground.

Tapas Das, Pushpajit Debnath, S. B. Satpute and S. Bandyopadhyay

Treatments		At 75DAS			At 90DAS			At 120DAS	
	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled
T ₁	1007.63	1185.697	1096.663	1785	2367.647	2076.323	3418.363	3289.363	3353.863
T ₂	1297.667	1328.497	1313.082	2052	2714.667	2383.333	3695.663	3689.363	3692.513
T ₃	1397.697	1672.197	1534.947	2214	2781.333	2497.667	3001.363	3909.363	3455.363
T_4	1472.297	1687.597	1579.947	2824	2850.68	2837.34	3722.363	4037.363	3879.863
T ₅	1823.297	1957.397	1890.347	2842.713	3118.333	2980.523	3786.363	4301.363	4043.863
T ₆	1939.667	2127	2033.333	3075.333	3356.78	3216.057	3942.363	4530.963	4236.663
T ₇	2121.097	2361.997	2241.547	3316	3488.28	3402.14	4171.363	4634.363	4402.863
T ₈	1109.197	1205.397	1157.297	1936.333	2580.913	2258.623	3614.363	3212.363	3413.363
T,,	1389.997	1528.097	1459.047	2202	2602	2402	2822.363	3304.363	3063.363
T ₁₀	1402.697	1648.997	1525.847	2272	2868	2570	2943.363	3620.363	3281.863
T ₁₁	1426.797	1670.063	1548.43	2292	2805	2548.5	3080.363	3786.363	3433.363
T ₁₂	1445.997	1687.93	1566.963	2349	2868	2608.5	3289.363	3712.363	3500.863
T ₁₃	1457.397	1650.997	1554.197	2402	2513.333	2457.667	3351.363	3428.363	3389.863
T ₁₄	992.3333	1023.647	1007.99	1306	1486	1396	1998.363	2019.363	2008.863
SEm.(±)	63.0397	87.418	39.53	141.03	142.4	117.27	182.9	182.9	184.27
CD (0.05)	1007.63	1185.697	1096.663	1785	2367.647	2076.323	3418.363	3289.363	3353.863
CV (%)	1297.667	1328.497	1313.082	2052	2714.667	2383.333	3695.663	3689.363	3692.513

 T_1 (100% phosphorus through SSP)(5.84). Better nutrient availability might have resulted in greater leaf area index. The trend was similar at later stages of observations too. Similar trends were also registered by Ghosh et al.⁷, Saha and Hajra¹⁵ Figure 3).

Pooled data (Table 4) and (Figure 4) reveals that 100-pod weight in T_7 (150% phosphorus through rock-phosphate enriched vermicompost grade-I) recorded highest value (93.22 gm) and T_{14} (control) exhibited the lowest value (61.08 gm) among the treatments. In general, irrespective of gradation of vermicompost with the increased in its application increased the 100-pod weight significantly. In general way, the data revealed that, wherever chemical fertiliser was substituted with grade-I, rockphosphate enriched vermicompost, increased the nutrient availability and uptake significantly and ultimately achieved higher value of 100-pod weight. Dayal and Agarwal⁴, Babalad², Enyi⁶, Jaswal and Gupta⁹, Rahman and Rahman¹⁰, Ghosh et al.⁷, and Tiwari et al.¹⁸ also reported similar result in different crops.

100-kernel weights (Table 4) and (Figure 4) varied significantly with different treatments (Table 4) and (Figure 4) Pooled data revealed that the T_7 (150% phosphorus through rockphosphate enriched vermicompost grade-I) exhibited the highest value (63.56 gm) of 100-kernel weight, while T_1 (100% phosphorus through SSP) recorded lowest value (53.82 gm) among the fertilized plots. The probable reason was higher available phosphorus and favourable soil condition in T_7 . Shanwad¹⁷, Enyi⁶, Acuna and Sanchez¹ and Roopadevi et al.¹⁴ also experienced the similar result in different crops.

It was observed (Table 5) and (Figure 5) that T_{4} (25%) phosphorus through SSP + 75% phosphorus through PC grade II) recorded highest value of haulm yield (3541.1), followed by T_{o} (50% phosphorus through SSP + 50% phosphorus through rockphosphate enriched vermicompost grade-II) and T₁ (100% phosphorus through SSP). Moreover, wherever more than 75% phosphorus through rockphosphate enriched vermicompost (grade -I) was applied (i.e. in T_7 , T_6 and T_5), also produced quite substantial amount of haulm growth to give the higher economic yield at the end. Ghosh et al.4 and Raundal et al.¹³ also concluded same result with application of P enriched compost in legumes and cereals. T_s (75% phosphorus through SSP + 25% phosphorus through VC grade-II) recorded lowest value of haulm yield (3159) due to lower vegetative growth. Roopadevi et al.14 also noticed same result.

The highest (86.43%) shelling out turn (%) (Table 4) (Figure 4) was found in T_7 (150% phosphorus through

Table 3. F	Effect o	f rockp.	hosphate	enrici	hed ver.	micompo	ost on L	AI at d	lifferent	develoț	menta	l stages o	f Groui	ndnut				
Treatments		At 30 D/	AS		At 45 D ₁	AS	F	At 60 DA	S		At 75DA	S		At 90DA	S	Α	t 105DA	S
	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled
T	2.11	2.12	2.12	2.88	3.20	3.04	4.35	4.51	4.43	5.82	5.85	5.84	5.48	5.19	5.34	4.15	4.22	4.19
$\mathrm{T}_{_2}$	2.22	2.48	2.35	3.07	3.26	3.16	4.51	4.82	4.67	5.98	6.46	6.22	5.46	6.11	5.79	4.33	4.42	4.38
$\mathrm{T}_{_3}$	2.30	2.46	2.38	3.03	3.45	3.24	4.62	5.03	4.82	6.16	6.71	6.43	5.95	5.97	5.96	4.48	4.56	4.52
$\mathrm{T}_{_4}$	2.38	2.51	2.45	3.16	3.48	3.32	4.67	5.15	4.91	6.26	6.88	6.57	6.10	6.21	6.16	4.55	4.81	4.68
T ₅	2.35	2.56	2.46	3.28	3.45	3.37	4.82	5.23	5.03	6.47	6.83	6.65	6.21	6.21	6.21	4.61	4.76	4.69
T_6	2.41	2.55	2.48	3.35	3.53	3.44	4.87	5.27	5.07	6.53	7.13	6.83	6.42	6.31	6.36	4.75	4.87	4.81
$\mathrm{T}_{_{7}}$	2.44	2.61	2.52	3.41	3.57	3.49	5.03	5.41	5.22	6.77	7.26	7.02	6.50	6.41	6.46	4.78	4.95	4.87
$T_{_8}$	2.14	2.45	2.29	3.00	3.28	3.14	4.40	4.80	4.60	5.82	6.35	6.09	5.54	5.96	5.75	4.32	4.31	4.32
T_9	2.21	2.45	2.33	3.07	3.37	3.22	4.52	4.88	4.70	6.02	6.53	6.28	5.91	5.98	5.95	4.41	4.48	4.45
$\mathrm{T}_{_{10}}$	2.24	2.48	2.36	3.02	3.42	3.22	4.53	5.02	4.77	6.13	6.66	6.39	5.94	5.96	5.95	4.44	4.53	4.49
$T_{_{11}}$	2.32	2.48	2.40	3.12	3.44	3.28	4.62	5.12	4.87	6.16	6.77	6.46	6.02	6.02	6.02	4.56	4.61	4.59
T_{12}	2.35	2.51	2.43	3.13	3.45	3.29	4.61	5.14	4.87	6.16	6.87	6.52	6.02	6.02	6.02	4.62	4.63	4.63
${ m T}_{ m _{13}}$	2.35	2.53	2.44	3.20	3.44	3.32	4.69	5.12	4.91	6.21	6.88	6.55	6.00	6.24	6.12	4.54	4.78	4.66
$\mathrm{T}_{\mathrm{_{14}}}$	1.75	1.83	1.79	2.58	2.66	2.62	3.74	3.82	3.78	4.92	5.03	4.97	4.59	4.63	4.61	4.09	4.02	4.05
SEm.(±)	2.26	0.18	0.04	0.17	0.17	0.05	0.19	0.18	0.06	0.24	0.25	0.10	0.23	0.23	0.12	0.12	0.12	0.05
CD (0.05)	0.40	0.52	0.12	0.48	0.50	0.15	0.54	0.53	0.19	0.70	0.71	0.30	0.66	0.67	0.35	0.34	0.35	0.14
CV (%)	10.7	12.87	2.31	9.33	8.84	2.11	7.02	6.43	1.87	6.85	6.46	2.19	6.67	6.67	2.76	4.58	4.52	1.41
				leđu	30					0								
				əwdo	25								1051	S∆S				
				se sevel	- 02								0 D	AS				
				p jua	15								■ 75D/	AS				
				netti ,	ç									As				
				b te	2									AS AS				
				IAJ	ب													
					•	 	15 T4	91	81 71	61 011	111 217	T14						
										,		•						

6 Vol 8 (11) | June 2015 | www.indjst.org

Figure 3. Effect of rockphosphate enriched vermicompost on LAI at different developmental stages of Groundnut.

Treatments	100	-kernel we	ight	10	0 -pod wei	ght	Shel	ling out tu	rn %
	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled
T_1	52.35	55.29	53.82	59.88	65.79	62.84	59.57	56.09	57.84
T ₂	42.38	50.50	46.44	70.37	71.44	70.91	57.04	59.18	58.11
T ₃	44.78	51.51	48.15	72.67	74.43	73.55	63.32	68.34	65.84
T_4	41.27	50.07	45.67	73.35	79.31	76.34	68.93	76.09	72.51
T ₅	41.51	47.58	44.55	78.57	81.61	80.10	69.40	76.32	72.87
T ₆	45.67	56.68	51.18	82.44	87.61	85.03	76.84	85.07	80.96
T ₇	63.68	63.43	63.56	87.87	98.56	93.22	87.62	85.22	86.43
T ₈	45.75	57.79	51.77	59.43	66.63	63.04	54.95	61.22	58.09
T ₉	44.78	56.66	50.72	70.72	75.37	73.05	56.98	69.43	63.21
T ₁₀	47.60	59.71	53.65	74.51	76.26	75.39	58.47	69.83	64.15
T ₁₁	52.86	50.92	51.89	74.30	85.33	79.82	72.06	64.20	68.13
T ₁₂	45.26	57.78	51.53	81.40	85.50	83.45	60.75	75.77	68.26
T ₁₃	45.32	52.32	48.82	83.26	94.40	88.83	64.40	73.24	68.82
T ₁₄	40.18	44.58	42.38	59.81	62.34	61.08	48.73	50.88	49.81
SEm.(±)	0.15	0.13	2.3298	0.17	0.17	1.74	0.24	0.24	3.22
CD (0.05)	0.44	0.38	7.11	0.50	0.50	5.32	0.69	0.71	9.83
CV (%)	0.56	0.42	6.55	0.41	0.37	3.23	0.64	0.60	6.82

Table 4.Effect of rockphosphate enriched vermicompost on 100-pod weight (g), 100-kernelweight (g) and shelling outturn % at harvest of groundnut

Figure 4. Effect of rockphosphate enriched vermicompost on 100-pod weight (g), 100-kernel weight (g) and shelling out turn % at harvest of groundnut.

rockphosphate enriched vermicompost grade-I) and T_1 (100% phosphorus through SSP) showed the lowest value (57.84%) and T_{13} (150% rockphosphate enriched vermicompost grade-II) (68.82%) was in 5th rank. This was due to higher kernel weight and lesser pod weight in T_7 in comparison with other treatments. The general

information that surfaced from this data set that rockphosphate enriched vermicompost grade-I treated plots enhanced the nutrient availability and improved the percentage of shelling out turn significantly in comparison with chemical fertiliser treated plots. The treatments under grade-I vermicompost could able to

Treatments	pod	yield (kg h	na⁻¹)	Haul	m yield (kg	g ha-1)	Ha	rvest index	(%)
	2012	2013	pooled	2012	2013	pooled	2012	2013	pooled
T ₁	1384.00	1574.00	1479.00	3238.2	3309.1	3273.7	36.6	32.04	34.32
T_2	1620.00	1767.00	1693.50	3231.0	3472.0	3351.5	34.05	33.73	33.89
T ₃	1908.00	2157.00	2032.50	3155.3	3419.1	3287.2	40.39	38.69	39.54
T_4	2150.00	2220.00	2185.00	3580.0	3502.2	3541.1	40.51	38.82	39.665
T ₅	2154.00	2263.00	2208.50	3228.0	3303.0	3265.5	40.64	40.69	40.665
T ₆	2157.00	2300.00	2228.50	3177.1	3348.0	3262.6	42.63	40.75	41.69
T ₇	2381.00	2420.00	2400.50	3191.0	3162.0	3176.5	44.82	43.26	44.04
T ₈	1511.00	1675.00	1593.00	3175.0	3243.0	3209.0	32.29	33.87	33.08
Τ ₉	1854.00	2077.00	1965.50	3344.1	3635.1	3489.6	36.81	36.37	36.59
T ₁₀	1897.00	2107.00	2002.00	3043.0	3529.0	3286.0	36.71	37.39	37.05
T ₁₁	2077.00	2174.00	2125.50	3268.1	3264.2	3266.2	41.76	39.99	40.875
T ₁₂	2078.00	2190.00	2134.00	3220.2	3373.0	3296.6	39.88	39.38	39.63
T ₁₃	2097.67	2210.00	2153.83	3114.4	3289.9	3202.2	40.6	40.2	40.4
T ₁₄	1027.70	990.00	1008.85	2225.0	2342.0	2283.5	30.77	30.62	30.695
SEm.(±)	118.69	98.58	167.63	193.4	122.3	73.6	1.846	1.0795	0.7323
CD (0.05)	345.03	286.58	487.28	562.1	355.5	224.9	5.368	3.1381	2.2372
CV (%)	10.95	8.5	9.06	10.6	6.4	3.2	8.348	4.978	2.724

Table 5. Effect of rockphosphate enriched vermicompost on pod yield, haulm yield and harvestindex of groundnut at harvest

━━ pod yield (kg/ha) ━━ haulm yield ━━ Harvest Index

Figure 5. Effect of rockphosphate enriched vermicompost on pod yield, haulm yield and harvest index of groundnut at harvest.

supply all other essential elements apart from P in more balanced way, may be due to the better mineralization of organic matter under comfortable sphere of activity of earthworm.

The phosphorus through rockphosphate enriched vermicompost was applied in higher percentage, the

value of harvest index (Table 5) and (Figure 5) improved significantly. T₇ (150% phosphorus through rockphosphate enriched vermicompost grade-I) registered the highest value of harvest index in both the years (44.82% and 43.26%). The lowest value of harvest index was found in T₂ (75% phosphorus through SSP + 25% phosphorus

through grade I) in both years (33.73% and 33.89%). This was due to lower pod yield and higher biomass yield corresponding to the treatment. Ghosh et al.⁷ also concluded similar result in P enriched compost.

Phosphorus use efficiency (Table 6) and (Figure 6) in case of Partial factor of productivity was highest for the treatment T_5 (100% of rockphosphate enriched vermicompost grade-I) (55.21 kg ha⁻¹) followed by T_4 (25%)

rockphosphate through SSP + 75% phosphorus through phosphocompost grade–I) (54.63 kg ha⁻¹). Lowest Partial factor of productivity was the T₁₃ (150% phosphorus through rockphosphate enriched vermicompost grade-I). Agronomic efficiency was higher in T₅ (100% of rockphosphate enriched vermicompost grade-I) (29.99 kg ha⁻¹) followed by T₄ (25% rockphosphate through SSP + 75% phosphorus through phosphocompost grade–I)

Table 6.Effect of rockphosphate enriched vermicompost on Phosphorususe efficiency in ground nut

Treatments	Partial factor	Agronomic	Apparent	Physiological
	of productivity	efficiency (AE)	recovery (AR)	use efficiency
	(PFP) (kg/ha)	(kg/ha)	(%)	(PUE) (kg/ha)
T ₁	36.98	11.75	47.325	24.84
T ₂	42.34	17.12	99.825	17.15
T ₃	50.81	25.59	97.575	26.23
T_4	54.63	29.40	141.45	20.79
T ₅	55.21	29.99	219.8	13.64
T ₆	44.57	24.39	239.42	10.19
T ₇	40.01	23.19	306.4667	7.57
T ₈	39.83	14.60	104.1	14.03
Τ,	49.14	23.92	123.625	19.35
T ₁₀	50.05	24.83	179.925	13.80
T ₁₁	53.14	27.92	119.725	23.32
T ₁₂	42.68	22.50	244.22	9.21
T ₁₃	35.90	19.08	207.55	9.19

Figure 6. Effect of rockphosphate enriched vermicompost on Phosphorus use efficiency in ground nut.

(29.40 kg ha⁻¹). However, Apparent recovery, was highest in T_{τ} (150% phosphorus through rockphosphate enriched vermicompost grade-I) (306.46%) followed by T_{11} (100%) phosphorus through rockphosphate enriched vermicompost grade-II) (244.22%). In the same way maximum value of Physiological use efficiency was noticed under the treatment T_3 (50% rockphosphate through SSP + 50% phosphorus through phosphocompost grade-I) (26.23 kg ha⁻¹) and it was followed by T_4 (25% rockphosphate through SSP+75%phosphorus through phosphocompost grade-I) (20.79 kg ha-1). However, rockphosphate enriched vermicompost treated plots recorded the lower values of Phosphorus use efficiency than the integrated treated plots might be due to corresponding higher values of absorbed phosphorus in applied plots. Thus it was very clear from this (Table 6) that organic sources of P increased the partial factor of productivity and Agronomic efficiency up to either 100% of its use or in integration with chemical. However in 125% and 150% organic treatments the availability of nutrient showed better and proved surplus for the standing crop which showed luxury consumption of nutrient by standing crop through it. Dwivedi⁵ got more pronounced effect of P enriched compost on P use efficiency and relative agronomic effectiveness.

4. Conclusion

Pooled analysis of data of two years studies showed that highest pod yield was obtained from T_7 , that receiving 150% phosphorus through rockphosphate enriched vermicompost grade-I) whereas, the treatment receiving 100% recommended dose through sole application of chemical fertiliser (T_1) was lowest yield among the fertilized plots. T_7 (150% phosphorus through rockphosphate enriched vermicompost grade-I) was followed by T_6 (125% phosphorus through rockphosphate enriched vermicompost grade-I) and T_5 (100% phosphorus through rockphosphate enriched vermicompost grade-I) which were at par with each other.

Dry matter accumulation for Treatment T_7 ((150% phosphorus through rockphosphate enriched vermicompost grade-I) recorded higher dry matter accumulation than T_{13} (150% rockphosphate enriched vermicompost grade-II). Treatment T_1 (100% phosphorus through SSP) recorded lowest values almost all sampling.

Increasing trend of LAI values up to 75 DAS and thereafter declined. Both the organic treatment $\rm T_{_7}$ (150%

phosphorus through rockphosphate enriched vermicompost grade-I) and T_{13} (150% rockphosphate enriched vermicompost grade-II) had higher LAI than sole chemical treatment T_1 (100% phosphorus through SSP).

In general way, the data revealed that, wherever chemical fertiliser was substituted with grade-I, rockphosphate enriched vermicompost, increased the nutrient availability and uptake significantly and ultimately achieved higher value of 100-pod weight.

100-kernel weights varied significantly with different treatments. Treatment T_7 (150% phosphorus through rockphosphate enriched vermicompost grade-I) exhibited the highest value of 100-kernel weight, while T_1 (100% phosphorus through SSP) recorded the lowest value among the fertilized plots.

Treatment T_4 (25% phosphorus through SSP+75% phosphorus through PC grade II) recorded highest value of haulm yield (3541.1), followed by T_9 (50% phosphorus through SSP + 50% phosphorus through rockphosphate enriched vermicompost grade-II) and T_1 (100% phosphorus through SSP).

Rockphosphate enriched vermicompost grade-I treated plots enhanced the nutrient availability and improved the percentage of shelling out turn significantly in comparison with chemical fertiliser treated plots may be due to the better mineralization of organic matter under comfortable sphere of activity of earthworm.

Higher percentage the value of harvest index observe in T₇ (150% phosphorus through rockphosphate enriched vermicompost grade-I) registered the highest value of harvest index in both the years. The lowest value of harvest index was found in T₂ (75% phosphorus through SSP + 25% phosphorus through grade-I) in both years. This was due to lower pod yield and higher biomass yield corresponding to the treatment.

It was very clear from this result that organic sources of P increased the partial factor of productivity and Agronomic efficiency up to either 100% of its use or in integration with chemical. However in 125% and 150% organic treatments the availability of nutrient showed better and proved surplus for the standing crop which showed luxury consumption of nutrient by standing crop through it.

5. References

1. Acuna EJ, Sanchez PC. Responses of groundnut to the application of N, P, K to a Sandy loam in the Savana of Monagas state. Field Crop Abstracts. 1969; 1(1):55–66.

- 2. Babalad HB. Integrated nutrient management for sustainable production in soybean based cropping systems, [PhD thesis]. Dharwad, India: Uni Agric Sci; 1999.
- 3. Bhawalkar US. Chemical farming to natural farming a quick changeover without loss of yield. In: Somani LL, Totawat KL, Baser BL, editors. Proceedings of National Seminar on Natural Farming. Udaipur: Rajasthan College of Agriculture; 1992; p. 79–88.
- 4. Dayal D, Agarwal SK. Response of sunflower genotypes (Helianthus annuus) to nutrient management. Ind J Agric Sci. 1999; 69(1):10–3.
- 5. Dwivedi GK. Efficient utilization of Mussoorie rockphosphate as partially acidulated product in acid soil under French bean-wheat sequence. Annals of Agricultural Research. 1995; 16(3):317–23.
- 6. Enyi BAC. Physiology of grain yield in groundnut. Experimental Agriculture. 1977; 13:101–10.
- Ghosh PK, Manna MC, Hati KM, Mandal KG, Bandyopadhyay KK, Misra AK, Tripathi AK, Chaudhary RS, Acharya CL. Effectiveness of phosphocompost application on groundnut in Vertisol of Central India. International Arachis Newsletter. 2001; (21):51–3.
- 8. Gosh TK, Das Gupta DK. Effects of date of sowing on growth and yield of groundnut (Arachis hypogaea L.) in lateritic upland. Plant Science. 1975; 7:56–60.
- 9. Jaswal SV, Gupta VP. Selection criterion in improving erect types of groundnuts. Punjab Agricultural University, Journal of Applied Research. 1967; 4:188–91.
- Rahman MM, Rahman L. Correlation studies on groundnut. Bangladesh. Journal of Agricultural Sciences. 1976; 3(1):23-7.

- Raj AL, Sabale RN, Raundal PU. Effect of phosphomanures on groundnut-wheat cropping system. Journal of Maharashtra Agricultural Universities. 2001; 26(1):45–7.
- Rasal PH, Jadhav BR, Nazirkar RB, Kalbhor HB, Pawar KB. Quantitative assessment of phosphocompost and their efficacy in groundnut-wheat cropping system and soil health. Journal of Maharashtra Agricultural Universities. 2002; 27(2):156–60.
- Raundall PJ, Hayes JE, Hocking PJ, Richardson AE. Root exudates in phosphorus acquisition by plants. In: Arihara NAcJ, Okada K, Srinivasan A, editors. Plant nutrient acquisition – new concepts for field professionals; Springer – Verlag, Tohyo. 2001. p. 71–100.
- Roopadevi VD, Viswanath AP, Devkumar N. Growth and yield of horse gram (Macrotyloma uniflorum Lam. Verdec) as influenced by phosphorous sources. Mysore Journal of Agricultural Sciences. 2001; 35(4):339–42.
- 15. Saha H, Hajra JN. Preparation of phosphocompost from rice straw and response of groundnut. Journal of the Indian Society of Soil Science. 2001; 49(1):144–9.
- 16. Sastry KSK, Sashidhar VR, Mekhri AA, Parameswara G. Final report of the scheme for drought tolerance studies on groundnut, castor and safflower, 1974-79. Bangalore, Karnataka: University of Agricultural Science; 1980.
- Shanwad UK. Integrated nutrient management in rainfed sunflowerandpigeonpeaintercroppingsystem. [MScAgrithesis]. Dharwad, India: Uni Agric Sci; 1999.
- Tiwari VN, Pathak AN, Lehri LK. Manurial value of compost enriched with rockphosphate and microbial inoculants to greengram. Journal of the Indian Society of Soil Science. 1988; 36(2):280–3.