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1.  Introduction

Nowadays grid and cellular structures are used in a variety 
of engineering applications including aircraft, navy ship, 
constructions and transportations where strong, stiff 
and light structures are required. The typical cellular 
structure is structural sandwich panel that consists of 
three layers. Two high density face sheets are adhesively 
bonded to a low density core with high thickness that has 
to carry the transverse shear loads (Figure 1). Advantages 
sandwich structure is that large bending stiffness value in 
conjunction with very low specific weight are obtained. 
Because of the complexity of the core geometry and for 
reasons of numerical efficiency, analysis of sandwich 
structure is performed by considering of effective 
properties rather than by consideration of the real grid 
cellular structure which replaced by a quasi-homogeneous 
effective medium. At macroscopic level, equal mechanical 
behavior from quasi-homogeneous structure and cellular 

structure are the requisite for calculating the properties of 
the effective medium1–4.

Figure 1.    Structural Sandwich Panel.

Initial research on the two-dimensional cellular 
sandwich core is done by Kelsey et al.5 also Chang and 
Ebcioglu6 at (1961) who is brought up the  transverse 
shear properties for regular hexagonal core. Because of the 
honeycomb geometry has some appropriate properties 
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like lightness, carry the normal, shear, and compound 
load, and easy produce and application, the most of studies 
were have  be on hexagonal geometry, like Gibson et al.7, 
Warren and Kraynik8, also. The effective elastic properties 
of regular isotropic triangular cell structures and square 
cell structures have worked by Gibson and Ashby9, also 
a study on the 3 x 3 unit cell has performed by Torquato 
et al.10 and Huybrechts and Tsai11. In continuation of 
previous research Hohe and Becker1,12 worked on the 
grid structure based on homogenization for calculating 
the strain energy in the real triangular microstructure, 
also their researchers Continued on the hexagonal and 
quadrilateral grid with unconstraint  generals geometry 
core for two-dimensional with straight and curved 
walls2,3, as well as they could obtain a method for general 
geometry  with constraint core4,13. Hohe and Becker12 
worked on hyper plastic honeycombs14,15. As regards, 
the most of studies were on the regular geometries like 
honeycomb, triangular and square, in the present study 
with changes in the number of nodes and their position 
and arrangements on the boundary of Representative 
Volume Elements (RVE) the new stronger geometries 
for shear components of elasticity tensor is acquired. 
Also by comparing previous researches with changes 
in the size of RVE suitable results are obtained. Shear 
stiffness and weight are two factors have been considered 
in this study. In commercial applications regular core 
geometries is common but in this study is tried, the 
effect of changes for the shear stiffness indicated with 
the combined geometries. The method for calculating 
components of elasticity tensor is strain energy that based 
on homogenization2–4. Undoubtedly the acquisition 
of lighter sandwich structures can be considered as 
an advantage. Depending on the application of these 
structures, high elasticity tensor for a certain amount 
of force with less weight can be suitable. Certainly if 
the sandwich structures were put under the directional 
forces, conditions will require to high stiffness in the 
same directions for their greater longevity. Obviously, 
variations in the core geometry of sandwich structure can 
lead to the production of structures with high quality.

2.  Basic Concept

2.1 Strain Energy based Homogenization
Because calculating the strain energy for the network 
structures has been complex, the studies on the strain 

energy of sandwich structures using homogenization 
have been carried out. In this method consider a body 
Ω consisting of a periodic cellular material which is 
limited by an external boundary Γ=Γt ⋃ Γu which either 
strain  or displacements  are assigned (Figure 2). 
The body  has to be substituted by a similar body  
with the same shape and subjected to the same boundary 
condition  and . The body  is supposed to 
consist of the homogeneous effective medium with yet 
unknown properties. For the calculation of the effective 
properties, a Representative Volume Element (RVE) for 
the microstructure  and a similar volume element 
consisting of the effective medium are assumed3.

Figure 2.    The concept of homogenization 
& Representative Volume Element (RVE).

The properties of the effective medium must be 
determined in such a way that the mechanical behavior of 
both volume elements to be equivalent on the macroscopic 
level. In present study equivalence on the macroscopic 
level is assumed, accordingly if the strain energies w  and 

*w  in both volume elements are equal.

     (1)

Both volume elements are subjected to macroscopically 
equivalent strain states  and  respectively. 
Equivalence of the strain states in both volume elements 
is assumed, if the volume average of the infinitesimal 
strain tensors is equal16.

       2)

The effective properties now have to be determined in 
such a way that Equations (1) and (2) are satisfy all strain 
states. A linear elastic constitutive equation in a local 
formulation is posited on the effective level.

,         (3)

Thus, the components  of the effective elasticity 
tensor are specified by the second partial derivatives of 
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the strain energy density with respect to the strains3. 
Therefore, equation is presented in this way;

(4)

In Equation (4) indicates the average strain energy 
density in their preventative volume element is affected by 
a homogeneous strain state, where all components of the 
macroscopic strain tensor except  and  are equal to 
zero. Thus, the representative volume element is thought 
to be deformed by a number of reference strain states for 
which the strain energy has to be evaluated. Afterwards, 
all components of the effective elasticity tensor can be 
calculated by means of Equation (4).The strain energy can 
be assessed either analytically or numerically.

2.2  The Calculations of the Strain Energy 
of RVE

Two-dimensional cellular RVE is presented in Figure 3, 
also this parallelogram-shape shown by a, b, c, where cell 
walls connected together by some nodes (unit cell) inside 
or on the boundary. For calculating the strain energy of 
RVE, unit cell must be decomposed into individual cell 
wall elements, thus the strain energy of entire volume 

cell wall element in terms of the nodal deflections3.

Also,        (6)

Where E is Young’s modulus and  is the Poisson’s ratio 
and  and t are the length, height and thickness of the 
cell wall respectively. Rotation is  with respect to the 
transverse axis at node i and  is the displacement of 
node i in direction j. It is obvious that a complete linear 
system of equations must satisfy some constraints and 
conditions. For calculation the components of , 2n+1 

equation should be created for n node.ForcesFi, torques 
Mi, deflection , and rotations  can be obtained by 
some condition and constraint that list below;

1. No rigid body motions of the whole RVE are allowed. 
Four equations are given by this condition1,3

2. Each node in the Periodic boundary of RVE must 
constitute at least a triple force with another neighbor 
RVE.

3. The effective strain field is assumed homogeneous 

elements can be determined by the sum of strain energies 
of each cell wall, also displacement field can be implication 
in terms of the deflections of the cell walls end.

There is a method for determination the strain energy 
for unconstraint core that it is presented by Hohe and 
Becker4. The stress field conform strain field by Hook’s law. 
Due to this, the strain energy density can be calculated as 
half of the product of the stress and strain fields. Union of 
the strain energy density according to the volume of the 
cell wall element finally obtains the strain energy of the 

therefore the relationship between rotations and de-
flection of nodes for whole of RVE can be obtained4.

4.  Can be calculated for whole of RVE using Green’s 
theorem in terms of displacement field ui. Five equa-
tions are given by this condition4.

5. All of the inside nodes in RVE should have balance of 
force and torque1,4.

6. Length wall should be less than 0.2 h so that Timos-
henko beam condition can be true.

7. Minimum number of nodes must be four.

Figure 3.    RVE for General Sandwich Coregeometry - Decomposition of the RVE.
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2.3 Variables, Constraints, Parameters
In present study M, Z, Wn, NP, W2 are variables in 
representative volume elements. M is the number of 
nodes on parallelogram shape’s boundary (RVE) that are 
limited to 4 ≤ M ≤ 12. Z is the number of nodes inside of 
the parallelogram shape that are limited to 0 ≤ Z ≤ 4. Wn 
is the number of walls in the parallelogram shape must 
not cross over each other’s lines. Np is nodes position in 
the parallelogram shape that depends on the size of the 
parallelogram and finely Wa is wall arrangements that 
depends on the others variables. On the other hand there 
are some parameters like, La, Lb, Lc which are the length 
of parallelogram shape in a,b,c  direction respectively.   
which is density that depends on by the volume of cell walls 
(VCW) and volume of RVE (VRVE) that define by  
and h is the height of the core. With this interpretation, 
thickness depends on other variables like RVE and cell 
walls and the condition of Timoshenko beam. Also the 
weight of core depends on thickness of wall, wall lengths 
and core’s height.

      (7)

     (8)

3.  Result and Discussion

3.1 The Effect of Variables on 
In present study, the effect of displacement of nodes on 
the same RVE with sameWn, M, Z is indicated; also the 
important location for the unit cell is visible in the Figure 
4. Two unit cells with the combination geometries in a 
same shape (RVE) with

which are similar in every respect with just a difference in 
arrangement are indicated. Applying an infinitesimal 
transverse shear strain in direction 1 to 2 ( ) on the 
geometries of Figure 4. The amount of transverse shear 
components of elasticity tensor is acquired by Equation 
(4) and weight by Equation (8), that they are   

 (Figure 4a), and 
 (Figure 4b). It’s clear that 

W1,W2could be more resistant than  W3,W4in direction 1 
to 2. Also for W1,W2 their displacement field provides 
better conditions that cause to high strain energy, that 
help to increase the shear properties. Rearranging increase

 amounted to 45.7% and reduces the rate of weight 
to 1.5%. It seems that increasing the size of RVE and its 
changes from parallelogram to rectangular improve the 
transverse shear properties. However, long wall and 
proximity of the walls is specified the thickness and length 
of walls together.

Also same shape as pervious example, the effect of 
changing wall arrangement is indicated in (Figure 5). It is 
observed that the change in the arrangement of the walls 
can produce inappropriate amount for shear component 
of elasticity tensor that  
for Figure 5a and  for 
Figure 5b. Two equal RVE (Figure 5) with difference in 

 is shown the importance of the node 
position and the number of walls. Node number 2 is the 
same node number 7 in repetitive shape that five walls 
leading to them, but in Figure 5b node number 12 and 
17 have four walls. The node number 2 is a very strong 
support for Figure 5a in appropriate location. Also nodes 
number 5, 9 are same in repetitive shape, that the total 
wall leading into them are four walls. In contrast the nodes 
number 15, 19 have three walls in the general case. Such 
this kind of conditions, hence nodes with high number of 
walls in direction 1 to 2 improve shear properties, though 
there is some increasing in weight.

In previous research by Hohe and Becker3,12 

for a hexagonal core with a single cell wall 
is composed of three walls (Figure 6a) that 

 is obtained while 
.

Amount of   is very less than hybrid geometries 
in Figure 4, though a small proportion of RVE size must be 
considered. Accordingly, the ratio the RVE’s size to each 
other is , indeed, if the  ratio considered for 
weight and stiffness of hexagonal core hybrid core (Figure 
4a) can be an appropriate geometry used in industries 
yet. Displacement field and rotations and subsequent 
shear deformation in nodes of honeycomb geometry are 
more than nodes of in hybrid geometries. Although in 
some previous studies3, 4 for increasing the stiffness, the 
thickness of the horizontal cell walls is considered twice 
as large as the thickness of the inclined cell walls, but in 
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present study rather than the change in thickness of wall, 
is used from changes in arrangement. The node number 
25 is inside node that has suitable properties like other 
nodes in parallelogram shape (RVE) in Figure 6a.  

Also some researches have been on triangular 
geometry that similar results have been found (Figure 
6b) while it has been shown that with increasing   
for triangular geometry, the amount of stiffness will 
decrease1. Subsequently in present study for a triangular 
geometry   is obtained while RVE 

have Node numbers 
28, 29 in general view have four walls but the location of 
them and the nature of triangular are caused low stiffness 
in compare with hybrids and hexagonal geometries. 

3.2 The Effect of Variables on 
Following the  the second component of 

elasticity tensor is  that applying an infinitesimal 
transverse shear strain in direction 2 to 3 ( ) with 

Figure 4.     Rectangular RVE for combination geometries (Positive Effect on  ).

Figure 5.     Rectangular RVE for Combination Geometries (Positive-Negative Effect on  ).
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is indicated for heterogeneous geometry in Figure 7. The 
effect of nodes and walls of RVE according to Figure 7 on 
the low density is shown, while proximity of walls has a 
large impact on the increasing amount of  that cause 
the increasing  of the shear properties in  direction 2 to 3 
(the height of core). With these conditions 

 is acquired the node number 
33 and 38 also 32, 34, 39  have five walls in general form 
that wall 33-34 has a high strain energy. For a hexagonal 
geometry of approximately the same size RVE 

 is obtained that the 
rotation of nodes in hexagonal increase the stiffness 
properties that shown by Hohe and Becker3,4, nevertheless 
the effect of the proximity of walls, M, Z, Wn, Pn, and the 
size of RVE in this study with some example is checked. 
Although the weight of Figure 7 is heavy than hexagonal 
geometry but high stiffness is more concretely.

4.  Conclusion

In the present study, the energetic homogenization 
method presented by the authors in previous papers on 
the analysis of triangular, hexagonal and quadrilateral 
core geometries is extended to combinatorial and 
heterogeneous geometry for sandwich panel cores. 
Indeed some new geometries with appropriate properties 
for transverse shear stiffness is acquired by changes in 
the number of nodes and walls, and also the size of RVE 
and the position of node. Soar effect of rearrangement of 
walls and their located for transverse shear applications 
is the main characteristic of present study that  results 
obtained have confirmed these claims. Advantage of 
the present study is providing new pattern applied for 
sandwich panels core those shear properties that have 
higher priority.

Figure 6.     Rectangular RVE for Combination Geometries for  ).

Figure 7.     Rectangular RVE for Combination Geometries (Positive Effect on  ).
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