
Abstract
As cloud computing model recently become promising and enables users to obtain their required services, many users
desirous to run their workflow applications on it. Scheduling workflow is one of the most important challenges in the cloud.
For optimal use of the capabilities of the distributed system, an efficient scheduling algorithm is needed. Addressing the
problem of scheduling workflow applications onto Cloud environment is the main contribution of this paper. Heterogeneity
of resource types is one of the most important issues which significantly affect workflow scheduling in Cloud environment.
On the other hand, a workflow application is usually consisting of different tasks with the need for different resource
types to complete which we call it heterogeneity in workflow. The main idea in this paper is to match the heterogeneity in
workflow application to the heterogeneity in Cloud environment. To obtain this objective a new scheduling algorithm is
introduced, which is based upon the idea of detecting the set of tasks that could run concurrently and distribute them into
different sub-workflows and then allocate each sub-workflow in resource cluster instead of allocating individual tasks.
This can reduce inter-task communication cost and thus improve workflow execution performance. First we perform
global scheduling and then conduct local scheduling. On the Global-scheduling to achieve high parallelism the received
DAG partition into multiple sub-workflows that is realized by WPRC algorithm. On the Local-scheduling, sub-workflows
were generated at the global level are dispatched to selected resource clusters. We used the simulation to evaluate the
performance of the proposed algorithm in comparison with three well-known approaches. The results show that the
proposed algorithm outperforms other approaches in different QoS related terms.

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(12), 57984, June 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Scheduling Workflow Applications on
the Heterogeneous Cloud Resources

R. Bagheri1 and M. Jahanshahi2*

1Department of Computer Engineering, Gazvin Branch, Islamic Azad University, Tehran, Iran
2Department of Computer Engineering, Central Tehran Branch, Islamic Azad University,

Tehran, Iran; mjahanshahi@iauctb.ac.ir

1.  Introduction

Cloud computing is the service-focused that delivers
hardware infrastructure and software application as ser-
vices with low cost and high quality1,2. These technology
advances have led to the possibility of using geographi-
cally distributed to solve large-scale problems in science,
engineering, and commerce. Currently, cloud computing
services are categorized into three classes: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). These services are available
in a pay-per-use on demand model3,4. Some researchers

Keywords: Cloud Computing, Cluster resources, Scheduling Algorithm, Workflow

consider the benefits of using cloud computing for exe-
cuting scientific workflows5–8. Several features that are
distinct cloud computing from other computing environ-
ments consist of: (1) The type and number of compute
resources assigned to a workflow are determined by
service requests. (2) Compute resources in Cloud are
exposed as services that provide a standardized interface
for services to access over the network9. Workflows con-
stitute a common model for describing a wide range of
scientific applications in distributed systems. Usually, a
workflow can be represented by a Directed Acyclic Graph
(DAG) in which each computational task is represented

Scheduling Workflow Applications on the Heterogeneous Cloud Resources

Indian Journal of Science and Technology2 Vol 8 (12) | June 2015 | www.indjst.org

by a node, and each data or control dependency between
tasks is represented by a directed edge between the cor-
responding nodes. Workflow scheduling is the way of
choosing a suitable resource for each task. With Growing
up and complexity of workflow, the need of workflow’s
scheduling be felt more than ever and has become one of
the most important challenges in the cloud. The workflow
scheduler has to schedule and allocate each task accord-
ing to the dependency of the workflow’s tasks.

As task scheduling is a well-known NP-complete
problem10. Many heuristic methods have been pro-
posed for distributed system. Most of them try to
minimize the total completion time of all tasks (make
span) and cost of the workflow11–14. Zeng et al. proposed
a budget-conscious scheduler to minimize many-task
workflow execution time within a certain budget15.
In16, Abrishami et al. designed a QoS-based workflow
scheduling algorithm based on Partial Critical Paths
(PCP) in SaaS clouds to minimize the cost of workflow
execution within a user defined deadline. Workflow
scheduling algorithms are classified into four classes:
1) list-based, 2) duplication-based, 3) clustering-based,
and 4) level-based. Most previous workflows scheduling
research are based on a list-based heuristic approach.
List-based scheduling is a class of scheduling heuristics
in which tasks are assigned with priorities and placed
in a list ordered in decreasing magnitude of priority.
An important issue in DAG scheduling is how to rank
the nodes. The rank of a node is used as its priority in
the scheduling and then allocates each individual task
onto processors. Many list-based heuristics proposed
in the literature14,17,18. In this paper, we propose an
algorithm according to the clustering-based heuristic
approach. Clustering is another efficient way to reduce
a communication delay in DAGs by grouping heavily
communicating tasks to the same labeled clusters19. In
general, clustering algorithms have two phases: the task
clustering phase that partitions the original task graph
into clusters for allocation instead of allocating indi-
vidual tasks. This can reduce inter-task communication
cost and thus improve workflow execution performance
and post-clustering phases which can refine the clusters
produced in the previous phase and get the final task-
to-resource map. The rest of the paper is organized as
follow: Section 2, describes the scheduling architecture
and model used by algorithm. Section 3, the proposed
scheduling algorithms are explained. Section 4, evalu-
ates simulation results. Section 5, concludes.

2.  Workflow Scheduling Model
The proposed workflow scheduling model consists of a
Cloud application model and a cloud resource model. A
Cloud application is modeled by a Directed Acyclic Graph
(DAG), G = (V, E, q, w), in which V = {ti |i =1, 2, . . . , m}
be the finite set of tasks ti and E be the set of directed arcs
of the form e(ti, tj), An edge e (ti,tj) represents the com-
munication from ti to tj where ti is called a prior of tj , and
tj is a successor of ti and qi represents the computational
cost of task ti. The weight w of e (ti,tj) represents the com-
munication cost from task ti to tj.

 In cloud resource model, resources have been clus-
tered that formed with multiple VMs. Resource clusters
are connected by a WAN, and within a cluster, computa-
tional nodes are connected by high speed LAN. Usually,
the communication cost by WAN is much higher than
LAN. We name the cost of communication between two
resources in different cluster as external communication
cost similarly; we name the cost of communication within
a cluster, internal communication cost. The internal data
transfer in cloud similar to the most recently publish
is negligible. Each resource cluster represented by Ci
(1≤i≤m), where i is the unique identification number of
the cluster and m is the number of clusters.

When a workflow receives, it will break into sub-
graphs, according to knowledge about available
resources, by executing the Workflow Partition Resource
Clusters (WPRC) algorithm and then scheduler will run
the local level scheduling and map tasks in subgraph to
local computational node. A computational resource is
denoted as Ri,j where i is the resource cluster id to which
this resource belongs and j is the resource id within its
cluster. For a resource cluster Ci, the number of resources
in Ci is represented by ni. Let pi,j is the expected perfor-
mance of Ri,j so Pi is total computation power of Ci, which
is the sum of the computational power of all resources
in Ci:

The average performance of all available
Computational resources in Ci is given by:

P- is the average computational power of all resource
clusters that compute by:

(1)Pi =
=
∑Pi, j
j

ni

1

Pi =
P
n

i

i
(2)

R. Bagheri and M. Jahanshahi

Indian Journal of Science and Technology 3Vol 8 (12) | June 2015 | www.indjst.org

We assumed that communication cost between resource
cluster Ci and Cj is represented by Com Cost_Ci,j and the
average cross-cluster communication cost is defined as:

We assumed that the computation power of resource
effect on the time required completing a task and the time
to finish a data transfer is commensurate with the com-
munication cost of the link.

2.1  WPRC: Scheduling Algorithm
High parallelism means to dispatch more tasks simulta-
neously to different resources. To achieve this, the main
task graph needs to be partitioned into subgraphs and
each subgraph has to be assigned to a resource cluster.
The main parameter must be determined in partitioning
of graph, is the number of partitions should be made (N).
To determine N, CTC parameter is used. CTC is the ratio
of communication-to-computation. A high CTC value
means a task graph is computation intensive. Formally,
CTC is defined as:

Where q− is the average processing requirement of all
tasks. As the CTC increases, high parallelism is preferred
because more computational power is required. WPRC
determine the number of graph partitions to be created,
N, according to different workflow patterns and commu-
nication costs:

Here β is the accelerating factor and ∆p is the stan-
dard deviation on the computational power of different
resource clusters. It is clear that N is always no greater
than the number of available resource clusters.

With the number of subgraphs, to be created, WPRC
is to specify how tasks in the main graph should be

assigned. To achieve high parallelism and avoid ines-
sential external communication, the size of a subgraph
assigned to a resource cluster should be as large as possible
under a certain threshold value. The weights of edges con-
necting different subgraphs should be as small as possible
to minimize communication cost. According to purpose,
we need to detect the set of tasks that could run concur-
rently and distribute them into different subgraphs and
then specify the maximum number of nodes that could
run concurrently when assigned to the same resource
cluster that call Maximum Concurrent Node (MCN). To
get MCN, two parameters are defined: For a node ti in a
DAG, its Earliest Start Time (EST) is defined as follows:

EST (ti) = max (ET (tj) + e (tj, ti))
tj ∈ Pred (ti)

Where pred (ti) is the set of immediate predecessors of
ti and Execution Time (ET) of tj is defined as:

The Earliest Finish Time (EFT) of ti is defined as
follows:

EFT (ti) = EST (ti) + ET (ti)� (11)

Now, we can specify which nodes could run concur-
rently. We call ti and tj parallel peers, if following equation
is satisfied to one of them: if the EST(ti) after EST (tj) and
before the EFT (tj) or the EFT (ti) after EST (tj)and before
the EFT (tj). By checking parallel peers of every node, we
can find the largest set of concurrent nodes in task graph
G, whose size is the value of MCN. The size of a partition
is also related with the computational power of resource
clusters. We assume that the set of resource cluster ser-
vices that are offered include:

S= {S1, S2… Sm}� (12)

If the number of resources in cluster i that offer ser-
vice j is ni,sj ,the average number of all available resources
in cluster i for service j is given by:

Sum of Computing power of all resources in the clus-
ter i that offer service j is Computation power (psj), the
average Computation power of all available resources in
cluster i for service j is given by:

P
m

Pi
i m

=
< <
∑1

1
(3)

Com Cost Com CostC C
i j

nl

i i j
=

=
∑1

2
1m ,

,
(4)

CTC =
P
q

(5)

N m CTC ComCostCi
= ()×



()min , / β (6)

β =
∆p
P

(7)

∆ = −()
< <
∑p

m
P Pi

i m

1 2

1
(8)

(9)

ET tj() = q

P
j (10)

N
ni,sj=
ni

(13)

Scheduling Workflow Applications on the Heterogeneous Cloud Resources

Indian Journal of Science and Technology4 Vol 8 (12) | June 2015 | www.indjst.org

Where, di,j is the standard deviation of the perfor-
mance fluctuation of Pi,j in vari ous time slots, and Wi is
sum of weights of all resources in cluster i for various ser-
vices that can be obtain by the following equation:

And ΔSi is the standard deviation of the computational
capacity of resources in ri (so a larger di,j means the per-
formance of pi,j is more unstable and a larger ΔSi implies
that ri is more heterogeneous). After resource clusters are
ranked, N out of m of them, having the N highest ranks is
selected for the current job. We assume these clusters are
r1, rN. Then the initial threshold value Ti' of ri is defined as:

The above equation, the parallel computation power
of each cluster is also taken into account. Then the paral-
lel threshold value Ti of each subgraph to be created is
given by:

The pseudo-code for the WPRC is given in Algorithm1.
WPRC is described as follows. When a scheduler receives
a job, it first traverses the job’s DAG G to compute its
CTC, the number of partitions to create N, and the level
of each task node. Then, the scheduler selects N resource
clusters whose ranks are the highest N out of m, according
to its knowledge. A graph partition iteration checks every
remaining nodes in G to determine whether the node can
be put into a subgraph G’.

Algorithm 1 WPRC

Input: A task DAG G (V, E) and available Cloud resource
clusters C1…Cm.
Output: A subgraph of G and assigned to resource cluster
Ci.

1.	� Compute CTC, N and EFT and EST of each node in G,
and cluster ranks R and threshold values T;

2.	 Mark all nodes unassigned;

Resource failures to be statistically independent and
follow a constant failure rate Frj for each resource j. We
consider the reliability of an activity i as the Probability of
successful completion on a resource j, modeled using an
exponential distribution20,21:

Total reliability of all resources in the cluster i that
offer service j is given by:

Where, T is the average of tasks computation. The
average reliability of all available resource resources in
cluster i for different service is given by:

Then for each resource cluster, a weight (W) can be
obtained for each type of service in the resource cluster by
the following equation:

After we get the weight of all services in the all resource
clusters, we then create the clusters matrix:

In which Wij is weight of the resource cluster i for the
service j.

To be adaptive to the dynamic and heterogeneous
nature of the computational cloud, WPRC introduces
two parameters to describe the related properties of a
resource cluster, namely the Cluster Rank (Ri) and Parallel
Threshold (Ti). Thus

P
P

P
sj

sj

si

=

=∑ i

m

1

(14)

R T R ei j
Fr exetime T Rj i j, (,)() = − ∗ (15)

R S =i j()
∈
∑ R T Rj(,)

Rj resource
deliver service j

(16)

R Sj() = ()
()=∑

R S

R S

i j

i jj

m

1

(17)

W P Sij sj j= + () + ()N Computation power R (18)

s s sm
cls
cls

clsn

W W W m
W2 W22 W2m

W

1 2
1
2

11 12 1
1

...

.

.

.

...

...
. . .
. . .
. . .
nn Wn2 Wnm1 ...



























R
Wi

i j

ni

= − + ∆()
=
∑1 1

2 1

d n Si,j i i (19)

W Wi i,j=
=
∑
j

m

1

(20)

t

W
m

W
m
N

i

i j
j

m

i j

j

m

i

N

= × ×






























=

==

∑

∑∑

n Ri i

,

,

1

11

(21)

T MCN Gi = ∑
t

t
i

ii=1

N () (22)

R. Bagheri and M. Jahanshahi

Indian Journal of Science and Technology 5Vol 8 (12) | June 2015 | www.indjst.org

3.	 Select the resource cluster Ci with the highest thresh-
old value Ti;

4.	 Find the largest edge e (a, b) in which a, b have not
been checked;

5.	 IF Br (G’ + a) ≤ Ti and Br (G’ + b) ≤ Ti {
6.	 Add a and b to G’ and mark a and b as checked;
7.	 }
8.	 G = G - G’;
9.	 Put (G’, Ci) in the output set.

WPRC itself does not give the task-to-resource map,
but on the global level only partitions original workflow
to different subgraphs and then dispatches subgraphs to
different resource clusters. So, on the local level, another
scheduling algorithm is needed to get the final schedule
of the received subgraphs. For scheduling a subgraph in
special resource cluster need to rank all nodes and then
assign node to resource according to its priority. Usually,
the priority of a task node can be obtained by finding the
maximum distance from this node to the starting node.
Distance means the sum of computational and com-
munication costs along a certain path. To estimate the
completion time of nodes, we use the average perfor-
mance value of resource cluster. The rank or priority of a
node is defined as:

For the tasks to resources mapping, initially priority of
each task is computed. Then at each step, a task that has
the highest priority in the ready queue RQ is selected. The
task is placed in a ready queue RQ if all its predecessors
have been implemented and the middle results are pro-
vided. Once the task node is selected, the function Select
Processor (ti) for choice suitable source is called. Mapping
algorithm adopts a forward-looking approach to deci-
sion-making based on only the current state of resources
and task. Function Select Processor (ti) compute the exe-
cution time of task ti for all the resources that provide the
required service ti . It can be obtained from the following
equation:

After the task execution time were computed from
all sources, then the resource, where is minimize, is
selected. After each assignment, the rank of tasks will

be update. The pseudo-code for the Mapping is given in
Algorithm 2.

Algorithm 2 Mapping

Input: A task graph G and a set of resources R1… Rn

Output: A mapping of tasks to resources

1.	 Compute rank for each task;
2.	 Initialize the ready queue RQ with the entry task;
3.	 WHILE (there are unscheduled nodes) {
4.	 Select the highest priority task ti in RQ
5.	 Call Select Processor (ti) to assign task ti
6.	 Update priorities of all tasks
7.	 }

Select Processor (task ti)

1.	 FOR all available resource Rj that deliver service type x
(ti request service type x) {

2.	 Compute ET(ti)
3.	 }
4.	 Select the resource that has min ET (ti);
5.	 Insert ti to selected Resource;
6.	 Update available resource;

3. Discussion
In this section, we will present our simulation of the
Workflow Partition Resource Clusters algorithm.

3.1  Simulation Model
We evaluate the performance of WPRC using CloudSim22,
which has been widely adopted for the modeling and eval-
uation of cloud-based solutions. In the experiments, three
resource clusters are used. Each cluster consists of differ-
ent resources number connected by a LAN. The resource
clusters are connected by a WAN. In each resource clus-
ter, the resources in it have different computing power
and delivered different type of services. In terms of input
task graphs, We used random graph generation with the
ability of generating a variety of task graphs according
to different configuration parameters, such as average
number of task nodes of each graph, average outgoing
and incoming degrees for each node in a graph, and com-
putational and communication cost for each type of task
nodes and edges. The count of nodes in each workflow
graph set between 25 and 100 nodes. Each graph has a
single entry and a single exit node. We used the random

rank t max rank t
q

p
e i,j interi j

j
cost() () + 







 + ∗












= ()


∈ ()t Pred tj i

(23)

ET t = q /Pi i() (24)

Scheduling Workflow Applications on the Heterogeneous Cloud Resources

Indian Journal of Science and Technology6 Vol 8 (12) | June 2015 | www.indjst.org

graph generator discussed in 17. This random graph gen-
erator requires following input parameters:

•	 V: The number of task in the DAG.
•	 Out degree: The ratio of maximum out edges of a node

to total nodes of the DAG.
•	 Communication to Computation Ratio (CCR). It is

the ratio of the average communication cost to the
average computation cost.

•	 Β: The computational heterogeneity factor of resources.
•	 α: The depth parameter of the DAG. This parameter

indicates the depth of a DAG by using the uniform
distribution with the mean value equal to

The values for the input parameters are shown in
Table 1. The following four metrics are used to evaluate
the performance of the proposed algorithm:

3.2  Simulation Results
To evaluate the performance of the proposed algorithm
we compared it with the HEFT17, the QRS23 and the PFAS24
which are well-known methods for DAG scheduling. The
performance metric used in the simulation is the average
make span. To test our proposed algorithm, the following
parameters are considered in the experiment: 1) The aver-
age number of task nodes in a graph v 2) The ratio of the
average degree of a task node to the total number of tasks
in a graph (Edge density in a graph) 3) CCR.

Figure 1 present the average make span of our
approach over the others approach with respect to differ-
ent number of task.

Figure 2 present the average makespan of our approach
over the others approach with respect to different degree.

Figure 3 present the average make span of our approach
over the others approach with respect to different CCR.

The result of simulation indicates that the average
make span of workflow's graph with our approach algo-
rithm is better than other algorithms.

3.3  Further Analysis
Because our proposed algorithm is based on clustering
method and it is base on concurrent tasks, we define tasks
Graph Concurrency degree (GCa) that can be obtained
from the following equation:

V
α

.

Table 1.  The values for the input
parameters
Parameter Value
V 20, 40, 60, 80, 100
Out degree 0.1, 0.2, 0.3, 0.4, 0.5
CCR 0.1, 0.5, 1.0, 5.0, 10.0
α 0.5, 1.0, 2.0
Β 0.1, 0.25, 0.5, 0.75, 1.0

Figure 1.  Avg Makespane with different number of task.

Figure 2.  Avg Makespane with different degree.

Figure 3.  Avg Makespane with different CCR.

GC = MCN
NT

(25)

aGraph Concurrency

R. Bagheri and M. Jahanshahi

Indian Journal of Science and Technology 7Vol 8 (12) | June 2015 | www.indjst.org

Where MCN is the maximum number of tasks in a
workflow's graph that can be executed in parallel and NT
is the Number of tasks in a workflow. Simulation results in
Figure 4 show that whatever amount GC becomes larger
(ratio the number of concurrent tasks to the total tasks)
Difference in performance of the proposed algorithm
with other algorithms will be more and improvement of
the proposed algorithm compared to other algorithms
will be more.

4.  Conclusion
We propose a new Workflow Partition algorithm WPRC
for a workflow scheduling in the cloud. Scheduling is in
two phases, on the global level, WPRC clusters workflow
to achieve high parallelism and on the local level, Sub
workflows was generated at the global level are then dis-
patched to selected resource clusters. It not only considers
the heterogeneity and dynamism of cloud resources, but
also uses an adaptive strategy according to different work-
flow patterns and resource topologies. When it partitions
a task graph, WPRC try to minimizing the cost of work-
flow execution and the make span. Future work includes
improving the current strategy, and uses other parameters
for clustering the workflow.

5.  References
  1.	� Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud

computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future
Generation Computer Systems. 2009; 25(6):599–616.

  2.	� Rajathi A, Saravanan N. A survey on secure storage in cloud
computing. Indian Journal of Science and Technology.
2013; 6(4):4396–401.

  3.	� Verma A, Kaushal S. Cloud computing security issues
and challenges: a survey. Advances in Computing and
Communications. 2011; 193:445–54.

  4.	� Pal AS, Pattnaik BPK. Classification of virtualization envi-
ronment for cloud computing. Indian Journal of Science
and Technology. 2013; 6(1):3965–71.

  5.	� Deelman E. Grids and clouds: making workflow applica-
tions work in heterogeneous distributed environments.
International Journal of High Performance Computing
Applications. 2010; 24(3):284–98.

  6.	� Hoffa C, Mehta G, Freeman T, Deelman E, Keahey K,
Berriman B, et al. On the use of cloud computing for sci-
entific workflows. eScience, 2008 eScience’08 IEEE Fourth
International Conference; IEEE; 2008.

  7.	� Juve G, Deelman E, Vahi K, Mehta G, Berriman B, Berman
BP, et al. Scientific workflow applications on Amazon EC2.
2009 5th IEEE International Conference on E-Science
Workshops; IEEE; 2009.

  8.	� Sathick KJ, Jaya A. Natural Language to SQL Generation
for Semantic Knowledge Extraction in Social Web
Sources. Indian Journal of Science and Technology. 2015;
8(1):1–10.

  9.	� Lin C, Lu S. Scheduling scientific workflows elastically for
cloud computing. 2011 IEEE International Conference on
Cloud Computing (CLOUD); IEEE; 2011; p. 746–7.

10.	� Yu J, Buyya R, Ramamohanarao K. Workflow schedul-
ing algorithms for grid computing. Metaheuristics for
scheduling in distributed computing environments. 2008;
146:173–214.

11.	� Gu Y, Wu Q. Optimizing distributed computing work-
flows in heterogeneous network environments. Distributed
Computing and Networking. 2010; 5935:142–54.

12.	� Rahman M, Venugopal S, Buyya R. A dynamic critical path
algorithm for scheduling scientific workflow applications
on global grids. IEEE International Conference on e-Sci-
ence and Grid Computing; IEEE; 2007. P. 35–42.

13.	� Wu Q, Gu Y. Optimizing end-to-end performance of
data-intensive computing pipelines in heterogeneous net-
work environments. Journal of Parallel and Distributed
Computing. 2011; 71(2):254–65.

14.	� Sakellariou R, Zhao H. A hybrid heuristic for DAG
scheduling on heterogeneous systems. 2004 Proceedings
18th International Parallel and Distributed Processing
Symposium; IEEE. 2004.

15.	� Zeng L, Veeravalli B, Li X. Scalestar: Budget conscious
scheduling precedence-constrained many-task work-
flow applications in cloud. 2012 IEEE 26th International
Conference on Advanced Information Networking and
Applications (AINA); IEEE; 2012.

Figure 4.  Avg Makespane of workflows with different GC
and increasing Difference the Avg Makespane with increases
GC.

Scheduling Workflow Applications on the Heterogeneous Cloud Resources

Indian Journal of Science and Technology8 Vol 8 (12) | June 2015 | www.indjst.org

16.	� Abrishami S, Naghibzadeh M. Deadline-constrained work-
flow scheduling in software as a service cloud. Scientia
Iranica. 2012; 19(3):680–9.

17.	� Topcuoglu H, Hariri S, Wu M-Y. Performance-effective and
low-complexity task scheduling for heterogeneous comput-
ing. IEEE Transactions on Parallel and Distributed Systems.
2002; 13(3):260–74.

18.	� Kwok Y-K, Ahmad I. Dynamic critical-path scheduling:
An effective technique for allocating task graphs to multi-
processors. IEEE Transactions on Parallel and Distributed
Systems. 1996; 7(5):506–21.

19.	� Yang T, Gerasoulis A. DSC: Scheduling parallel tasks on an
unbounded number of processors. IEEE Transactions on
Parallel and Distributed Systems. 1994; 5(9):951–67.

20.	� Dogan A, Ozguner F. Trading off execution time for reli-
ability in scheduling precedence-constrained tasks in
heterogeneous computing. Proceedings 15th International

Parallel and Distributed Processing Symposium; IEEE;
2001.

21.	� Yu J, Buyya R, Tham CK. Cost-based scheduling of scientific
workflow applications on utility grids. e-Science and Grid
Computing, 2005 First International Conference; IEEE. 2005.

22.	� Calheiros RN, Ranjan R, Beloglazov A, De Rose CA, Buyya
R. CloudSim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource pro-
visioning algorithms. Software: Practice and Experience.
2011; 41(1):23–50.

23.	� Chunlin L, Xiu ZJ, Layuan L. Resource scheduling with con-
flicting objectives in grid environments. J Netw Comput.
2009; 3:760–9.

24.	� Dong F, Akl SG. PFAS: a resource-performance-fluc-
tuation-aware workflow scheduling algorithm for Grid
Computing. 2007 IPDPS 2007 IEEE International Parallel
and Distributed Processing Symposium; IEEE. 2007.

