
Abstract
As cloud computing model recently become promising and enables users to obtain their required services, many users 
desirous to run their workflow applications on it. Scheduling workflow is one of the most important challenges in the cloud. 
For optimal use of the capabilities of the distributed system, an efficient scheduling algorithm is needed. Addressing the 
problem of scheduling workflow applications onto Cloud environment is the main contribution of this paper. Heterogeneity 
of resource types is one of the most important issues which significantly affect workflow scheduling in Cloud environment. 
On the other hand, a workflow application is usually consisting of different tasks with the need for different resource 
types to complete which we call it heterogeneity in workflow. The main idea in this paper is to match the heterogeneity in 
workflow application to the heterogeneity in Cloud environment. To obtain this objective a new scheduling algorithm is 
introduced, which is based upon the idea of detecting the set of tasks that could run concurrently and distribute them into 
different sub-workflows and then allocate each sub-workflow in resource cluster instead of allocating individual tasks. 
This can reduce inter-task communication cost and thus improve workflow execution performance. First we perform 
global scheduling and then conduct local scheduling. On the Global-scheduling to achieve high parallelism the received 
DAG partition into multiple sub-workflows that is realized by WPRC algorithm. On the Local-scheduling, sub-workflows 
were generated at the global level are dispatched to selected resource clusters. We used the simulation to evaluate the 
performance of the proposed algorithm in comparison with three well-known approaches. The results show that the 
proposed algorithm outperforms other approaches in different QoS related terms.
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1.  Introduction

Cloud computing is the service-focused that delivers 
hardware infrastructure and software application as ser-
vices with low cost and high quality1,2. These technology 
advances have led to the possibility of using geographi-
cally distributed to solve large-scale problems in science, 
engineering, and commerce. Currently, cloud computing 
services are categorized into three classes: Infrastructure 
as a Service (IaaS), Platform as a Service (PaaS) and 
Software as a Service (SaaS). These services are available 
in a pay-per-use on demand model3,4. Some researchers 
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consider the benefits of using cloud computing for exe-
cuting scientific workflows5–8. Several features that are 
distinct cloud computing from other computing environ-
ments consist of: (1) The type and number of compute 
resources assigned to a workflow are determined by 
service requests. (2) Compute resources in Cloud are 
exposed as services that provide a standardized interface 
for services to access over the network9. Workflows con-
stitute a common model for describing a wide range of 
scientific applications in distributed systems. Usually, a 
workflow can be represented by a Directed Acyclic Graph 
(DAG) in which each computational task is represented 
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by a node, and each data or control dependency between 
tasks is represented by a directed edge between the cor-
responding nodes. Workflow scheduling is the way of 
choosing a suitable resource for each task. With Growing 
up and complexity of workflow, the need of workflow’s 
scheduling be felt more than ever and has become one of 
the most important challenges in the cloud. The workflow 
scheduler has to schedule and allocate each task accord-
ing to the dependency of the workflow’s tasks. 

As task scheduling is a well-known NP-complete 
problem10. Many heuristic methods have been pro-
posed for distributed system. Most of them try to 
minimize the total completion time of all tasks (make 
span) and cost of the workflow11–14. Zeng et al. proposed 
a budget-conscious scheduler to minimize many-task 
workflow execution time within a certain budget15. 
In16, Abrishami et al. designed a QoS-based workflow 
scheduling algorithm based on Partial Critical Paths 
(PCP) in SaaS clouds to minimize the cost of workflow 
execution within a user defined deadline. Workflow 
scheduling algorithms are classified into four classes: 
1) list-based, 2) duplication-based, 3) clustering-based, 
and 4) level-based. Most previous workflows scheduling 
research are based on a list-based heuristic approach. 
List-based scheduling is a class of scheduling heuristics 
in which tasks are assigned with priorities and placed 
in a list ordered in decreasing magnitude of priority. 
An important issue in DAG scheduling is how to rank 
the nodes. The rank of a node is used as its priority in 
the scheduling and then allocates each individual task 
onto processors. Many list-based heuristics proposed 
in the literature14,17,18. In this paper, we propose an 
algorithm according to the clustering-based heuristic 
approach. Clustering is another efficient way to reduce 
a communication delay in DAGs by grouping heavily 
communicating tasks to the same labeled clusters19. In 
general, clustering algorithms have two phases: the task 
clustering phase that partitions the original task graph 
into clusters for allocation instead of allocating indi-
vidual tasks. This can reduce inter-task communication 
cost and thus improve workflow execution performance 
and post-clustering phases which can refine the clusters 
produced in the previous phase and get the final task-
to-resource map. The rest of the paper is organized as 
follow: Section 2, describes the scheduling architecture 
and model used by algorithm. Section 3, the proposed 
scheduling algorithms are explained. Section 4, evalu-
ates simulation results. Section 5, concludes. 

2.  Workflow Scheduling Model
The proposed workflow scheduling model consists of a 
Cloud application model and a cloud resource model. A 
Cloud application is modeled by a Directed Acyclic Graph 
(DAG), G = (V, E, q, w), in which V = {ti |i =1, 2, . . . , m} 
be the finite set of tasks ti and E be the set of directed arcs 
of the form e(ti, tj), An edge e (ti,tj) represents the com-
munication from ti to tj where ti is called a prior of tj , and 
tj is a successor of ti and qi represents the computational 
cost of task ti. The weight w of e (ti,tj) represents the com-
munication cost from task ti to tj.

 In cloud resource model, resources have been clus-
tered that formed with multiple VMs. Resource clusters 
are connected by a WAN, and within a cluster, computa-
tional nodes are connected by high speed LAN. Usually, 
the communication cost by WAN is much higher than 
LAN. We name the cost of communication between two 
resources in different cluster as external communication 
cost similarly; we name the cost of communication within 
a cluster, internal communication cost. The internal data 
transfer in cloud similar to the most recently publish 
is negligible. Each resource cluster represented by Ci 
(1≤i≤m), where i is the unique identification number of 
the cluster and m is the number of clusters. 

When a workflow receives, it will break into sub-
graphs, according to knowledge about available 
resources, by executing the Workflow Partition Resource 
Clusters (WPRC) algorithm and then scheduler will run 
the local level scheduling and map tasks in subgraph to 
local computational node. A computational resource is 
denoted as Ri,j where i is the resource cluster id to which 
this resource belongs and j is the resource id within its 
cluster. For a resource cluster Ci, the number of resources 
in Ci is represented by ni. Let pi,j is the expected perfor-
mance of Ri,j so Pi is total computation power of Ci, which 
is the sum of the computational power of all resources 
in Ci:

The average performance of all available 
Computational resources in Ci is given by:

P- is the average computational power of all resource 
clusters that compute by:

(1)Pi =
=
∑Pi, j
j

ni

1

Pi =
P
n

i

i
(2)
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We assumed that communication cost between resource 
cluster Ci and Cj is represented by Com Cost_Ci,j and the 
average cross-cluster communication cost is defined as:

We assumed that the computation power of resource 
effect on the time required completing a task and the time 
to finish a data transfer is commensurate with the com-
munication cost of the link.

2.1  WPRC: Scheduling Algorithm 
High parallelism means to dispatch more tasks simulta-
neously to different resources. To achieve this, the main 
task graph needs to be partitioned into subgraphs and 
each subgraph has to be assigned to a resource cluster. 
The main parameter must be determined in partitioning 
of graph, is the number of partitions should be made (N). 
To determine N, CTC parameter is used. CTC is the ratio 
of communication-to-computation. A high CTC value 
means a task graph is computation intensive. Formally, 
CTC is defined as:

Where q− is the average processing requirement of all 
tasks. As the CTC increases, high parallelism is preferred 
because more computational power is required. WPRC 
determine the number of graph partitions to be created, 
N, according to different workflow patterns and commu-
nication costs: 

Here β is the accelerating factor and ∆p is the stan-
dard deviation on the computational power of different 
resource clusters. It is clear that N is always no greater 
than the number of available resource clusters.

With the number of subgraphs, to be created, WPRC 
is to specify how tasks in the main graph should be 

assigned. To achieve high parallelism and avoid ines-
sential external communication, the size of a subgraph 
assigned to a resource cluster should be as large as possible 
under a certain threshold value. The weights of edges con-
necting different subgraphs should be as small as possible 
to minimize communication cost. According to purpose, 
we need to detect the set of tasks that could run concur-
rently and distribute them into different subgraphs and 
then specify the maximum number of nodes that could 
run concurrently when assigned to the same resource 
cluster that call Maximum Concurrent Node (MCN). To 
get MCN, two parameters are defined: For a node ti in a 
DAG, its Earliest Start Time (EST) is defined as follows:

EST (ti) = max (ET (tj) + e (tj, ti))
tj ∈ Pred (ti) 

Where pred (ti) is the set of immediate predecessors of 
ti and Execution Time (ET) of tj is defined as: 

The Earliest Finish Time (EFT) of ti is defined as 
follows:

EFT (ti) = EST (ti) + ET (ti)� (11)

Now, we can specify which nodes could run concur-
rently. We call ti and tj parallel peers, if following equation 
is satisfied to one of them: if the EST( ti ) after EST (tj ) and 
before the EFT (tj ) or the EFT (ti) after EST (tj )and before 
the EFT (tj ). By checking parallel peers of every node, we 
can find the largest set of concurrent nodes in task graph 
G, whose size is the value of MCN. The size of a partition 
is also related with the computational power of resource 
clusters. We assume that the set of resource cluster ser-
vices that are offered include:

S= {S1, S2… Sm}� (12)

If the number of resources in cluster i that offer ser-
vice j is ni,sj ,the average number of all available resources 
in cluster i for service j is given by:

Sum of Computing power of all resources in the clus-
ter i that offer service j is Computation power (psj), the 
average Computation power of all available resources in 
cluster i for service j is given by: 

P
m
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i m
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1
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Where, di,j is the standard deviation of the perfor-
mance fluctuation of Pi,j in vari ous time slots, and Wi is 
sum of weights of all resources in cluster i for various ser-
vices that can be obtain by the following equation:

And ΔSi is the standard deviation of the computational 
capacity of resources in ri (so a larger di,j means the per-
formance of pi,j is more unstable and a larger ΔSi implies 
that ri is more heterogeneous). After resource clusters are 
ranked, N out of m of them, having the N highest ranks is 
selected for the current job. We assume these clusters are 
r1, rN. Then the initial threshold value Ti' of ri is defined as:

The above equation, the parallel computation power 
of each cluster is also taken into account. Then the paral-
lel threshold value Ti of each subgraph to be created is 
given by:

The pseudo-code for the WPRC is given in Algorithm1. 
WPRC is described as follows. When a scheduler receives 
a job, it first traverses the job’s DAG G to compute its 
CTC, the number of partitions to create N, and the level 
of each task node. Then, the scheduler selects N resource 
clusters whose ranks are the highest N out of m, according 
to its knowledge. A graph partition iteration checks every 
remaining nodes in G to determine whether the node can 
be put into a subgraph G’.

Algorithm 1 WPRC

Input: A task DAG G (V, E) and available Cloud resource 
clusters C1…Cm.
Output: A subgraph of G and assigned to resource cluster 
Ci.

1.	� Compute CTC, N and EFT and EST of each node in G, 
and cluster ranks R and threshold values T; 

2.	 Mark all nodes unassigned;

Resource failures to be statistically independent and 
follow a constant failure rate Frj for each resource j. We 
consider the reliability of an activity i as the Probability of 
successful completion on a resource j, modeled using an 
exponential distribution20,21:

Total reliability of all resources in the cluster i that 
offer service j is given by:

Where, T is the average of tasks computation. The 
average reliability of all available resource resources in 
cluster i for different service is given by:

Then for each resource cluster, a weight (W) can be 
obtained for each type of service in the resource cluster by 
the following equation:

After we get the weight of all services in the all resource 
clusters, we then create the clusters matrix:

In which Wij is weight of the resource cluster i for the 
service j.

To be adaptive to the dynamic and heterogeneous 
nature of the computational cloud, WPRC introduces 
two parameters to describe the related properties of a 
resource cluster, namely the Cluster Rank (Ri) and Parallel 
Threshold (Ti). Thus

P
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3.	 Select the resource cluster Ci with the highest thresh-
old value Ti;

4.	 Find the largest edge e (a, b) in which a, b have not 
been checked;

5.	 IF Br (G’ + a) ≤ Ti and Br (G’ + b) ≤ Ti {
6.	 Add a and b to G’ and mark a and b as checked;
7.	 }
8.	 G = G - G’;
9.	 Put (G’, Ci) in the output set.

WPRC itself does not give the task-to-resource map, 
but on the global level only partitions original workflow 
to different subgraphs and then dispatches subgraphs to 
different resource clusters. So, on the local level, another 
scheduling algorithm is needed to get the final schedule 
of the received subgraphs. For scheduling a subgraph in 
special resource cluster need to rank all nodes and then 
assign node to resource according to its priority. Usually, 
the priority of a task node can be obtained by finding the 
maximum distance from this node to the starting node. 
Distance means the sum of computational and com-
munication costs along a certain path. To estimate the 
completion time of nodes, we use the average perfor-
mance value of resource cluster. The rank or priority of a 
node is defined as:

For the tasks to resources mapping, initially priority of 
each task is computed. Then at each step, a task that has 
the highest priority in the ready queue RQ is selected. The 
task is placed in a ready queue RQ if all its predecessors 
have been implemented and the middle results are pro-
vided. Once the task node is selected, the function Select 
Processor (ti) for choice suitable source is called. Mapping 
algorithm adopts a forward-looking approach to deci-
sion-making based on only the current state of resources 
and task. Function Select Processor (ti) compute the exe-
cution time of task ti for all the resources that provide the 
required service ti . It can be obtained from the following 
equation:

After the task execution time were computed from 
all sources, then the resource, where is minimize, is 
selected. After each assignment, the rank of tasks will 

be update. The pseudo-code for the Mapping is given in 
Algorithm 2.

Algorithm 2 Mapping

Input: A task graph G and a set of resources R1… Rn

Output: A mapping of tasks to resources

1.	 Compute rank for each task;
2.	 Initialize the ready queue RQ with the entry task;
3.	 WHILE (there are unscheduled nodes) {
4.	 Select the highest priority task ti in RQ
5.	 Call Select Processor (ti) to assign task ti 
6.	 Update priorities of all tasks
7.	 }

Select Processor (task ti)

1.	 FOR all available resource Rj that deliver service type x 
(ti request service type x) {

2.	 Compute ET(ti)
3.	 }
4.	 Select the resource that has min ET (ti);
5.	 Insert ti to selected Resource;
6.	 Update available resource; 

3. Discussion
In this section, we will present our simulation of the 
Workflow Partition Resource Clusters algorithm.

3.1  Simulation Model
We evaluate the performance of WPRC using CloudSim22, 
which has been widely adopted for the modeling and eval-
uation of cloud-based solutions. In the experiments, three 
resource clusters are used. Each cluster consists of differ-
ent resources number connected by a LAN. The resource 
clusters are connected by a WAN. In each resource clus-
ter, the resources in it have different computing power 
and delivered different type of services. In terms of input 
task graphs, We used random graph generation with the 
ability of generating a variety of task graphs according 
to different configuration parameters, such as average 
number of task nodes of each graph, average outgoing 
and incoming degrees for each node in a graph, and com-
putational and communication cost for each type of task 
nodes and edges. The count of nodes in each workflow 
graph set between 25 and 100 nodes. Each graph has a 
single entry and a single exit node. We used the random 
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graph generator discussed in 17. This random graph gen-
erator requires following input parameters:

•	 V: The number of task in the DAG.
•	 Out degree: The ratio of maximum out edges of a node 

to total nodes of the DAG.
•	 Communication to Computation Ratio (CCR). It is 

the ratio of the average communication cost to the 
average computation cost.

•	 Β: The computational heterogeneity factor of resources. 
•	 α: The depth parameter of the DAG. This parameter 

indicates the depth of a DAG by using the uniform 
distribution with the mean value equal to

The values for the input parameters are shown in 
Table 1. The following four metrics are used to evaluate 
the performance of the proposed algorithm:

3.2  Simulation Results
To evaluate the performance of the proposed algorithm 
we compared it with the HEFT17, the QRS23 and the PFAS24 
which are well-known methods for DAG scheduling. The 
performance metric used in the simulation is the average 
make span. To test our proposed algorithm, the following 
parameters are considered in the experiment: 1) The aver-
age number of task nodes in a graph v 2) The ratio of the 
average degree of a task node to the total number of tasks 
in a graph (Edge density in a graph) 3) CCR.

Figure 1 present the average make span of our 
approach over the others approach with respect to differ-
ent number of task. 

Figure 2 present the average makespan of our approach 
over the others approach with respect to different degree. 

Figure 3 present the average make span of our approach 
over the others approach with respect to different CCR.

The result of simulation indicates that the average 
make span of workflow's graph with our approach algo-
rithm is better than other algorithms.

3.3  Further Analysis 
Because our proposed algorithm is based on clustering 
method and it is base on concurrent tasks, we define tasks 
Graph Concurrency degree (GCa) that can be obtained 
from the following equation:

V
α

.

Table 1.  The values for the input 
parameters
Parameter Value
V 20, 40, 60, 80, 100
Out degree 0.1, 0.2, 0.3, 0.4, 0.5
CCR 0.1, 0.5, 1.0, 5.0, 10.0
α 0.5, 1.0, 2.0
Β 0.1, 0.25, 0.5, 0.75, 1.0

Figure 1.  Avg Makespane with different number of task.

Figure 2.  Avg Makespane with different degree.

Figure 3.  Avg Makespane with different CCR.

GC = MCN
NT

(25)

aGraph Concurrency
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Where MCN is the maximum number of tasks in a 
workflow's graph that can be executed in parallel and NT 
is the Number of tasks in a workflow. Simulation results in 
Figure 4 show that whatever amount GC becomes larger 
(ratio the number of concurrent tasks to the total tasks) 
Difference in performance of the proposed algorithm 
with other algorithms will be more and improvement of 
the proposed algorithm compared to other algorithms 
will be more.

4.  Conclusion
We propose a new Workflow Partition algorithm WPRC 
for a workflow scheduling in the cloud. Scheduling is in 
two phases, on the global level, WPRC clusters workflow 
to achieve high parallelism and on the local level, Sub 
workflows was generated at the global level are then dis-
patched to selected resource clusters. It not only considers 
the heterogeneity and dynamism of cloud resources, but 
also uses an adaptive strategy according to different work-
flow patterns and resource topologies. When it partitions 
a task graph, WPRC try to minimizing the cost of work-
flow execution and the make span. Future work includes 
improving the current strategy, and uses other parameters 
for clustering the workflow.
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