
Abstract
The approximation of a complex function by an Artificial Neural Networks (ANN) of Radial basis Function (NRF) conducts 
to large size architectures (a considerable number of neurons in the hidden layer) which minimize the quality of the 
network generation. This paper develops and implements an algorithm based on the Newton’s method for learning and 
searching for an optimal structure of a radial basis network. The algorithm reduces automatically the number of neurons in 
the hidden layer of the ANN and also reaches the minimal architecture without deteriorating the learning error. Tovalidate 
the algorithm, simulation of filtering noise from a noisy sinusoidal signal has been performed using MATLAB/SIMULINK. 
Satisfying results have been obtained and application as a filter for fault detection in a Wind Energy Conversion System 
(WECS) is intended.
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1.  Introduction
Neural networks with radial basis function are 
Feedforward networks with one hidden layer (Figure 1). 
The first use of this type of neural networks dates from 
1970s. They were used to solve problems in multivariable 
interpolation. The theoretical bases of these networks 
have been depened and further works have been done; like 
NRF applications development and enlargement1. These 
networks are distinguished by their ability to provide a 
local representation of the space using radial basis func-
tions ρ ⋅( ), where influence is restricted to some regions 
of the space.

In order to minimize the number of neurons an 
algorithm that eliminates the weak neurons is proposed.

 ⋅  represents the Euclidean norm.

2. � Neural Networks of Radial 
basis Function (NRF)

2.1 Basic Concepts
A radial basis function is as follows: 

	 r r m si i ix( ) ,x = −( ) � (2.1)

two parameter can be distinguished:

	

m

s

i

i

:

:

reference vector

center or prototype
dimension of theinfl

( )
uuence field

influence radius( )













The mostly used basis function is the Gaussian2, 3. It is 
expressed in its most general form as follows:
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Where si
2  designates the variance associated to the cell. The 

Gaussian decreases in the same way in all directions of the 
space. The iso-activation curves of the hidden cells are then 
hyper spheres6. For a given input data, a restricted number 
of basic functions contribute to the output calculation.

The NRF can be classified into two categories, 
depending on the output neuron4,5.
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In this paper, the values of the centers and the radii are 
initially fixed then they are varied by the algorithm. The 
arrangement of centers and radii, defines a kind of paving 
of the input space. In this case, this procedure represents a 
preliminary phase for a network of neurons called neutral. 

The centers are uniformly arranged in the domains of 
approximation. The number n of centers and the number 
ne of system inputs define a unique neutral network whose 
architecture is of neurons nne  .Then our algorithm will 
reduce this number by removing weak neurons. 

Figure 2 illustrates the recovery rate τ of a radial basis 
neural network into a unidirectional regular lattice given 
by6:
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with δ being the distance between two adjacent centers.
From equation (2.5), we conclude the equation of 

the radius, for a fixed value of the recovery rate and the 
distance between the centers of the Gaussian functions.

	 d = − −(c c ) / (n )1 0 1 	 (2.6)

The distance between the centers δ is a function of the 
first center c0 , the last center c1 and the number of centers  n: 

	 s d
t

=
× − ×( log( ))2 2

� (2.7)

It is therefore, the approach of the dynamics of a complex 
function that we need, to do so, samples are t drawn uniformly 
from an interval of time, with a given sampling period. We 
define the cost function J by the following equation. 

We define the cost function J by the following  
equation [7], [8]:

	 J
t

y yi ii

t
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2
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Where yi represents the output vector of the real process 
at each incremental instanti, ŷi is the output vector of the 
neural network as it is given by the following equation: 

Figure 1.  Network of radial based functions

Figure 2.  Gaussians with one-dimensional and regular 
lattice.
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with R being the normalization term given by the 
following equation: 
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Where:
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The vector of center cj
T has the same dimension as the 

input vector of the system (x) and Qj is a square matrix 
which represents the radii of the Gaussian, given by:
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3.  Proposed Algorithm Strategy 

3.1  Weak Neurons 

The response of the base function depends on the length 
of the input vector x (distance from x to the prototype 
μi), and the size of the influence field σi .The function ρi 
(x) is generally maximal when (x = μi) , and decreases 
monotonically to 0 when x i− → ∞m .

In case of a network with several inputs (Figure 1), x is 
a matrix of dimension (ne × ni). With ne being the number 
of inputs and ni is the number of learning samples:
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The matrix ϕ represents the responses of radial basis 
functions in each sampling instant.
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nc: The number of neurons in the hidden layer.

The matrix ϕ can be written as follows:
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Given Fj the function defined as:
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The weight of connection between the output neuron i 
and j of the hidden layer is given by wij. The weight matrix  
W id given by this equation:
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With ns being the number of output neurons.
The variation of these weights is done by the Newton’s 

method.
By referring to the equations describing the output ŷi 

of the network in function of the inputs, the values of the 
Newton’s method are given by the following equations:

First derivative of the criterion: 
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Second derivative of the criterion:
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if we put: 

	
D t J

w

D t
w

J
w

1

2

= ∂
∂

= ∂
∂

∂
∂
















� (3.8)

The correction of the weights is given as:

	 w wk k T+ −= −1 12 1[ ]TD D � (3.9)
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with k being an index of iteration.
given Swj (see figure 3) a function defined as follows :

	 Sw wj iji

n
c

s=
=∑ 1

; with : j =1: n � (3.10)

We define Aj as follows:

	 Aj= Swj × Fj� (3.11)

Aj represents the amount of influence of the neuron j 
of the hidden layer on the network outputs. If Aj is weak, 
the influence of the neuron number j of the hidden layer 
over the outputs of the network will be weak and can 
be neglected. It is on this reasoning that the principle of 
elimination of weak neurons in our algorithm is based.

3.2  Learning 
The learning methods of neural networks with radial basis 
functions, such as the gradient method, the method of 
conjugate gradients, the gradient method with optimal 
step, the method of Newton, have achieved great success 
in many applications. However, a problem is frequently 
encountered when doing learning of complex networks 
of neurons (that is, when the function to be minimized is 
multimodal). This problem is convergence to local optima. 
At the end of the iteration process, we obtain not the global 
optimum of the error function, but one of its local optima. 

Our algorithm is based on the following principle: it 
gives a significant number of centers for the network (a 
large number of neurons in the hidden layer) arranged 
uniformly in the areas of approximation (see Section 

2.1), then whenever weak neurons are eliminated (see  
Section 3.1), we vary the centers and radii and we refine 
the learning of the weights, in such a way to get a decrease 
or stability of the criterion to be minimized.

4. � Weak Neurons Elimination 
Method 

1.	� Begin (parameters initialization and network 
construction) :
Choice of the recovery rate (τ). 
Choice of the number of centers (n).
Choice of the step: ∆σ and ∆n .
Choice of the error constant: err.
Calculation of the distance between centars (δ).
Calculation of radius σ .
�Calculation of the number of neurons in the hidden 
layer ( nne ).
Random initialization of the networks weights w.
�Neutral network construction and network outputs 
calculation (ŷ).
Calculation of the criterion J.

2.	 Doing the learning of weights by the Newton’s 
method

3.	 While the stop criterion is not verified, do:

While J (t+1) = < J (t) + err do
    a)  Calculation of Aj .
    b)  Classify the neurons of the hidden layer.
    c)  Eliminate the weak neurons.
    d)  Relearning of the weights.
End while

While J (t + 1) = < J (t) do
    1)  Variation of radius : σ = σ + ∆σ .
    2)  Relearning the weights.
End while

For  i = 1 to  nc do

        ni = ni + ∆n.

    While J(t + 1) = < J (t) do

         ni = ni + ∆n.

      End while
       ni = ni− 2∆n.

      While J(t + 1) = < J (t) do

Figure 3.  Intermediate layer neurons weights summation.
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         ni = ni− ∆n.
    End while
  1)  ni = ni + ∆n.
  2)  Relearning of weights.
  3)  i = i + 1
  End for

4.	  go to step 3.

5. Application of the Method 
Our aim consists to the use of the neural networks as a 
filter with two inputs xi(k) and two outputs ŷi(k), for this 
we chose two noisy sine functions with a zero-mean 
Gaussian white noise sequence with covariance Qvi

, and 

we initialize the network by four centers (n = 4), that is, 
sixteen neurons in the hidden layer ( nne = 16 ).

The neural networks inputs are given by the following 
equation: 
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When Vi (k) is a zero-mean Gaussian white noise 
sequence with covariance Qvi

, k being an index of 
iteration and ω is the frequencies of the signal.

To use the neural networks as a filter to be used as 
desired outputs of network the inputs without noise 
whether:
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Figure 4.  Number of neurons in the hidden layer and 
learning error, in red the number of neurons retained.

Figure 5.  Learning phase, first network output in red and 
first desired output in blue

Figure 6.  Learning phase, second network output in red 
and second desired output in blue.
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6. Conclusion
In this paper, an algorithm for optimizing the structure 
of neural networks of radial basis function has been 
developed and tested. This algorithm eliminates the weak 
hidden layer neurons without deteriorates the learn-
ing error. The same performance level as an ANN with 
a considerably large size used can be achieved with only 
a network of much less size and also a better quality of 
generalization. Validating simulation of the algorithm by 
an example that allowed the filtering of a noisy sinusoi-
dal signal has also been performed. Filtering noise from a 
sensed fault signal is an interesting application.

As a future work authors intend to use the developed 
algorithm as a filter for the faults detection and isolation 
in a wind energy conversion system.
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By applying the algorithm to eliminate weak neurons, 
we reach 4 neurons in the hidden layer for a learning error 
j almost unchanged.

The figure 4 to 6 represents respectively the elimination 
of a weak hidden layer neurons and output of the neural 
networks.

For the generalization phase, the last values of weight, 
centers and radius are used. And we use sinusoidal inputs 
with a larger noise that used in the learning phase.

The figure 7 and 8 represents the input and output of 
the neural networks for the generalization phase.

Figure 7.  Generalization phase, first network output in red 
and first input in blue.

Figure 8.  Generalization phase, second network output in 
red and second input in blue.


