
Indian Journal of Science and Technology, Vol 8(15), 55793, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1.  Introduction

Consider a system with periodic task, which will request 
the resource at regular interval of time. Also assume 
a fault tolerance system, in which tasks may fail due to 
transient fault or inter failure. Here, a technique based 
on duplication of task; such that all jobs of each task 
meets their deadline by Probabilistic approach has been 
followed, i.e. minimum one task should meet deadline 
without fail.

In order to reduce the processor number, we can 
consider that each should have only two copies. One is 
primary, which must be always executed and another 
one is secondary copy (backup). When primary copy has 
been finished, it will force the secondary one to terminate 
which will be useful in saving resources. 

In critical application we required a dependable 
situation to ensure that system will meet their requirement 

since prediction of occurrence of fault is not possible. 
While computing we frequently experience that task 
should execute periodically.
For real time periodic task, different schemes are proposed 
to support fault tolerance scheduling as per Figure 1.

Figure 1.    Scheme for Fault tolerant scheduling.

Abstract
Objectives: This aim of this paper is to analyse different approaches for transient fault tolerance like PBS, RM-FT, 
FSP, BCE and MWFD. Methods: Transient faults are emerging as a critical issue in the reliability of real time systems. 
Besides multiprocessors being an apparent part of various booming technologies now-a-days, it becomes evident to 
make these systems susceptible, reliable and consistent to transient faults. Thus, to address the increasing susceptibility 
of multiprocessors systems to transient faults, different approaches are analysed to counter transient faults. Findings: 
To identify the optimal method for various constraints like slack time, reduction in time space and reconfiguration etc.
Applications: This comparative analysis will help for us to identify the optimal approaches for tolerating the transient 
fault in critical real time systems.

Keywords:  BCE, EDF, EH-EDF, EIT,  Fault Tolerance, FSP, LTH, MWFD, PBS, Reliability, RM-FT, Transient Faults 

Approaches for Transient Fault Tolerance in 
Multiprocessor - A State of Art

M. Shanmugasundaram1*, R. Kumar2 and Kittur Harish Mallikarjun1

1School of Electronics Engineering, VIT University, Vellore-632014, Tamil Nadu, India;  
mshanmugasundaram@vit.ac.in 

2Wipro Technologies, Chennai, Tamil Nadu, India; rajagopal.kumar@wipro.com



Vol 8 (15) | July 2015 | www.indjst.org Indian Journal of Science and Technology2

Approaches for Transient Fault Tolerance in Multiprocessor -A State of Art

As system becomes more complex, the design and 
implementation issues increase. Probability of fault 
increases as number of components increase in overall 
system. As compared to application level where time limit 
is not a big factor the real time system fault issues is more 
likely to be handle within a time limit.

In this paper we have analysed about some of the fault 
tolerant real-time scheduling algorithms such as RM-
FT probabilistic algorithm, dynamic optimal solution, 
check pointing based technique, Primary/Backup (PB) 
algorithm and linear time heuristic algorithm. Other for 
periodic tasks which we will discuss is BCE algorithm, 
CAT algorithm and EIT algorithm. We have also proposed 
an energy efficient scheduling scheme for deterministic 
fault-tolerance system in homogeneous multiprocessor 
system.

2.  Different Methodology

2.1 Scheduling Scheme 
We can define a periodic real time task ti as pair (Cj, Tj), 
where Cj is computation time and Tj is period6. These 
tasks are independent to which other. The utilization of 
periodic task is given as uj < Cj/Tj while total utilization of 
set of task is summation of utilization of all period task, 
which is given by U = ∑ Uj for 1 ≤ j ≤ n. This is best suited 
for distributed real time systems which are interconnected 
by communication links and also assumed that processor 
has hardware fault only which can be transient or 
permanent or independent8.

Assume that second processor cannot be failed 
before recovery of first processor system failure. If task 
arrived, which is not schedule previously at that time 
that particular task will be rejected and will not allows 
to go for execution at later stage, i.e. after completion of 
another task. 

Following two techniques are used to achieve high 
schedulability.

2.1.1 Back Up Overloading 
Schedules the backup during the multiple primary task 
execution in order to utilize processor time. 

2.1.2 De-allocate
The reserved resources for backup copy after the successful 
completion of primary task.

For tolerating the fault, we should confirm the 
reservations of resources for backup copy. It must have 
a different strategy for scheduling. Note it is important 
to confirm that the scheduling of primary and backup 
copies will not increase the running time significantly, 
which is proportional to the task window and the average 
execution time of tasks14.

The structure of scheduling scheme algorithm 
consists of task classifier, task allocator, scheduler and 
task manager. From above blocks task classifier classifies 
task into two classes, task allocator and scheduler will 
allocate the execution time while scheduler will schedule 
the priority of task8. 

Task classifier divide real time task set T into two 
categories 

1=  |   
2

i
L i

i

CT t T
T

ì üï ïï ïÎ ³í ýï ïï ïî þ
			   (1)

1=  |   
2

i
H i

i

CT t T
T

ì üï ïï ïÎ <í ýï ïï ïî þ			   (2)

Above equation shows that Task TL has high task 
utilization than TH  and task TH  has higher execution 
time than Ti ,due to this, we can assign backup copy to the 
same processor so that transient fault will not occur. After 
this we assigned all TH task to the processor with their 
backup copies. Fixed priority is assigned to all the task, 
if backup copy of any of the task is not assigned to the 
same processor it the task will be assigned to the TL. After 
adding all tasks to TL the task is assigned to the processor 
that is available at that particular time with fixed priority 
scheduling scheme. But in this case the backup copies of 
task are assigned to different processor, and previously 
backup copies of TH are replaced with backup copies 
assigned TL to avoid permanent fault. 

2.2 Dynamic Optimal Solution 
Task is assumed to be fault free if it completes its execution 
within the specified time and gives proper results, 
otherwise the task is faulty2.

Consider the task T = (a, d, c) where a represents 
arrival time of task, d represents deadline and c refers to 
the  worst case execution time. Let task window = (d - a) 
and window ratio is given by

W = (d - a)/c					     (3)



M. Shanmugasundaram, R. Kumar and Kittur Harish Mallikarjun

Vol 8 (15) | July 2015 | www.indjst.org Indian Journal of Science and Technology 3

Assume W ≥ 2. Fault tolerance can be guaranteed if 
the faults that occur are separated by ∆f time interval.

Let the number of tasks to be scheduled be ‘n’ and the 
queue of them be represented by QT, task starting time is 
t0. If the service is fault free, task will be executed within 
specified deadline that is if the following condition is 
satisfied,

10 jn
i it c d=+å £ 					  

While servicing, if any task is faulty, extra time is 
needed for recovery of the faulty task, so the time taken 
will be greater than

1

n

i
i

c
=
å

Let tj be the time that j tasks present in queue completes 
their function properly in presence of error, then Tj will 
properly execute within specified interval if tj < dj 

2.
The following equation will represent the estimate for 

time tj, in which the task is re executed.

1

n b
j ii=1 m

t t0 + c mb
=

= +å å 			   (4)

β1…..βm are slot lengths of B1,B2,…Bm slots.

Tu Bm
m Cu fb

Î
+ £Då 				    (5)

βm ≥ max {Cu|Tu  βm}				   (6)

Equation (4) gives time needed to execute tasks in 
queue in presence of faults. βm refers to the backup slot 
for re-execution. Equation (5) gives from βm slot almost 
one task to be re-executed. Equation (6) specifies that 
time required for re-execution of task which is in slot Bm 
will not be the time more than βm.

Finally we can say that:
Let QT=[T1,….Tn] be the queue of tasks to be 

scheduled. The task should be re- executed if the fault is 
detected during execution. If tj which will be calculated 
from above equations satisfies condition that execution 
time should be less than or equal to specified deadline 
(tj ≤ dj) then and if it is assumed that in the interval ∆f, 
at most only one fault occur, then all tasks in queue will 
execute within specified deadline.

2.3 Feasibility Shortest Path Algorithm 
It provides a mapping technique between a normal queue 

and fault-tolerant queue. It provides the assurance that 
all tasks can be completed within their deadlines if more 
than one fault will not occur within the short period Δf. By 
providing the shortest possible queue. Optimal mapping 
can be achieved by considering all possible placements of 
backups such that it should satisfy all conditions. In this 
algorithm a graph which contains various nodes is created 
then all paths in the graph must be explored12. The feasible 
shortest path can be achieved in graph G by satisfying the 
condition Vi, j < Di (where Vi, j is the time required) at 
each node Ni, j (Ni, j is node position). To achieve the 
optimal FSP, for a given queue with n tasks the backup 
will satisfy all the condition of fault tolerance regarding 
execution2. In the presence of multiple assignments of 
backups, the algorithm must have the capability to find 
the assignment that will reduce the queue length. After 
considering the1st Ti tasks in the queue, there are only two 
methods of placing the (i+1)th task in the queue (before or 
after the last backup). By exploring these paths, we can an 
optimal assignment. A dynamic programming approach 
can be used to get an optimal placement of backups,. 
Some set of tasks and their backups can be well organized 
at each node to detect the actual placement of back up if 
needed. This algorithm would be sufficient for a queue of 
non-real-time tasks. Whereas, in real-time applications, 
the deadlines will be taken into account. If the deadline 
of task Ti is not met when it is added to the queue. This 
algorithm will return fault tolerant guarantee by the 
presence of single feasible assignment. If the backup’s 
position in the queue is to be known, the edges on the 
shortest path can be followed to get at which points in the 
queue backups need to be inserted with the worst case 
complexity O (n2).

More computation power should be sacrificed while 
missing the scheduling of all critical tasks with fault 
tolerance. The accepted task must be completed before 
the deadline even in the presence of faults. In dynamic 
systems, the arrival time of tasks cannot be predicted. 
The task can be generated at arbitrary times due to 
events external to the system such as the system operator 
activating a task and the task has to be scheduled as soon 
as it arrives. FSP can be used for scheduling dynamically 
arriving tasks if the deadlines are not important such that 
there is sufficient time to run algorithm.

2.4 Linear Time Heuristic Algorithm 
Initially δ = β = t0 = 0
Where length of queue between two backup slots will be 



Vol 8 (15) | July 2015 | www.indjst.org Indian Journal of Science and Technology4

Approaches for Transient Fault Tolerance in Multiprocessor -A State of Art

tracked by δ, length of last backup will be specified by β 
and tj represents queue length when j numbers of tasks 
are considered. The algorithm is as follows:
{
	 for  j = 1…..,n+1 do
	 if ( δ + Cj + max {β, Cj} ≤ ∆f )
	 then δ = δ + Cj;
	 t(j) = t(j-1) + Cj; βmax {β, Cj};
	 else t(i) = t(i-1) + Cj + β;
	 β = Cj; δ = Cj;
	 if (tj + β ≥ dj) then 
	 return (Not guaranteed FT )
else
	 return(Guaranteed FT );
}

The above algorithm will return that  guaranteed FT, 
if only one fault is detected in interval ∆f .Then ‘n’ tasks 
which are present in queue will be executed properly that 
is fault freely within given deadline2.

2.5 BCE Algorithm
In periodic tasks the probability of occurrence of fault is 
considered an uniformly distributed function. Imprecise 
computations, which is proposed by Lin et all which 
concentrates on iterative calculations1. 

To provide deadline in real-time systems Campbell 
et al. Proposed an idea which tells that two versions are 
provided for each task, in which the one is primary and 
the other is backup versions.

This BCE algorithm is an offline scheduling algorithm 
which deals with last chance strategy. In this approach, 
primary will start executing first until the completion 
of given time. If in assigned time, primary does not 
complete the task, alternative will be given a chance to 
execute, otherwise if primary executes task completely 
and properly within scheduled time, alternative will not 
be given chance. The alternatives are given chance to 
pre-empt the currently executing primary when the time 
interval assigned for them appears.

2.5.1 Checking Availability Time (CAT) 
CAT refers to Checking Availability Time. The processor 
time will be wasted if the alternatives reassume the 
execution due to failure of primary. The maximum 
Availability time is given by

AT(kl)=(Vkl – CT) - 1

m

k=å Ik			   (7)

Where CT refers to Current time and Vkl denotes the 
Notification time and Ik denotes the time interval that 
the system as assigned for other tasks1. If the calculated 
maximum availability time is less than that of primary 
version, the alternate version will be executed by the 
system; otherwise it will execute the primary version. 

2.5.2 Eliminating Idle Time (EIT)
EIT refers to Eliminating Idle Time. The possibility of 
system or processor being in idle state will be increased 
if we use the CAT algorithm1. This can be overcome by 
the EIT algorithm which employs a method which allows 
alternate version to execute the task when processor is 
reaching its idle state.

2.6 RM-FT Algorithm 
Theorem A: For a given set of tasks Tall, the lowest priority 
task tij completes is given by Tij in RMFT, if and only if 
δ(T)=0 for some t4,13 .

Corollary A: The necessary condition required for all 
Tall and for all ‘f ’ faults can be obtained from Theorem 1.

Let ‘j’ be the number of tasks and where Tj contains 1 
to j high priority tasks in Tall.

Example:
Period(Ti) Execution time( Ci)

T1 4 1
T2 8 1

Here task set contains Tall=[T11,T12,T13]
Algorithm:
N=|Tall|
R={T11}
FOR j=1 to N
Array A[1…..j]//of size ‘j’
A=RM-IND(R) //create a schedule of set R
Tlk=lowest priority task is R
For t=0 to PC
If (t=fuin(Tij) and fuin(Tij)>=T1*(k-1)) then
If δ(R)=0 and fuin(Tij)<=t<=Tij then
Continue
Else
Not Schedulable And Stop
End If
End If
End For
If(j<N) then
Q=Q U{Tij}//where Tij having next highest priority in 



M. Shanmugasundaram, R. Kumar and Kittur Harish Mallikarjun

Vol 8 (15) | July 2015 | www.indjst.org Indian Journal of Science and Technology 5

taskset (Tall-R)
End if
End For
Task set Tall is Schedulable
Stop
Example:

Figure 2.    Example for RM_IND algorithm.

Consider the maximum fault = 2. Figure 2 and 3 
describes the RM_IND schedule j= 1,2, and 3.

Figure 3.    RM_IND Schedule.

When j = 1, R = {T11} and δ(T) = 2. Figure 4 represent 
the RM_FT Scheduling3.

Figure 4.    RM_FT Schedule.

Task instance T11 in RM_FT schedulable since δ = 0 
at time t = 4.

For j = 2, R = [T11,T12] in RM_FT and δ11 = 2 and 
δ12 = 2. The Schedule is given in Figure 5.

Figure 5.    Non Schedulable task instance.

2.7 Modified Worst Fit Decreasing (MWFD) 
This scheme can be used to analyse the MWFD scheme we 
carried out an experiment on, randomly generated 10,000 
tasks. The periods of the tasks are so taken that all tasks 
have the same probability of high, medium and low. The 
standard deviation of utilization is limited by maximum 
value11. The maximum value is a function of mean of 
utilization .let us assume the maximum number of faults 
be ‘K’ by taking into consideration that at maximum one 
fault can be tolerated by each task at a particular instance.

We validate the MWFD scheme and found that it does 
not degrade the feasibility of the schedule. The feasibility 
can be calculated as the percentage LPZ = multiprocessor 
utilization bound for scheduling a task set based on 
generic allocation schemes and conservative RMA.

From the analysis we have found the MWFD exhibits 
better schedulability performance than FFD with ratio of 
standard deviation to that of the maximum of standard 
deviation, i.e., change in task utilization is small. In other 
case, when utilization is very different among tasks of 
FFD.

MWFD and FFD provide greater comparable 
schedulability performance. Superior schedulability and 
performance to LPZ in all cases is obtained by MWFD.   
MWFD and WFD achieve similar schedulability 
performance with increase in overall faults ‘K’. The 
analysis shows that in the absence of faults MWFD leads 
to energy saves up to 60% as compared to FFD and WFD, 
also with increase in number of faults the average energy 
consumption per feasible task set increases slightly.

2.8 Primary/Backup (PB) Algorithm 
Study of Primary/Backup (PB algorithm) FT scheduling, 
allows us to identify the solution for processor transient/
permanent faults. Backup overloading and de-allocation 
methods can be recommended for fault tolerance which 
demands less processor time. Assume a system consists of 
homogenous multiprocessors with central task scheduler 
handling non precedence, independent tasks6. By this 
approach we can handle both permanent and transient 
faults. 

Task Ti modeled as shown in Figure 6
	 Ti=<ai, ri, di, ci>
Where,

	 ai = arrival time, ri = ready time, 
	 di = dead line, ci = processing time

Consider task Window should be at least twice large 
as processing time. 



Vol 8 (15) | July 2015 | www.indjst.org Indian Journal of Science and Technology6

Approaches for Transient Fault Tolerance in Multiprocessor -A State of Art

Figure 6.    Task Parameters.

The scheduler should guarantee to execute even 
though any one processor in failure state by assuring the 
second failure will not happen before recovering from 
first failure. If scheduler confirmation is not assured, then 
the task should be rejected. Figure 7 represents the major 
techniques of scheduling.

Figure 7.    Scheduling Techniques.

Two different time slots are available. Primary/backup 
time slots are required when primary and backup tasks 
scheduled. Overloaded time slots are required if we try to 
schedule backup copies of more than one tasks in same 
slot. 
Scheduling Restrictions:
Let Primary copy Pri and Secondary copy of task Bki
•	 Primary task and secondary can’t be scheduled on 

same processor.
•	 Begin time of secondary task has to be greater than 

primary So that backup can be executed after fault 
detection.

•	 Both primary and backup tasks have to be scheduled 
between ri and di (ready time and deadline)

•	 If two primary tasks are allotted in one processor then 
their backup must be scheduled in some other pro-
cessor without overlap.

For the set of task Ti, the fault tolerant scheduling 
algorithm is 
•	 Schedule Pri as early as possible.
•	 Try to schedule Bki by overloading technique on exist-

ing backup slot. If not, schedule it by as late as possi-
ble on free slot.

•	 If schedule of both Pri and Bki have been found, then 
accept those task otherwise reject it.

Algorithm principle
•	 When new task arrives, schedule should be done for 

both primary and backup.
•	 Maintain the details of existing slots while scheduling 

both the copies.
•	 Apply AEAP principle for primary and ALAP for 

backup.
•	 After successful completion of primary, its backup is 

de-allocated.
•	 The de-allocated slots can be used for scheduling new 

tasks.
Thus utilization is increased and overhead is reduced.
After arrival of 2 new primary tasks:
1.	 More than one fault can be tolerated by this algorithm.
2.	 Need of scheduling more backup copies for tolerating 

two faults arrives at same time. 
Transient fault tolerance using check pointing based 
technique.
Checkpoint refers to the state of the system at a particular 
instance of time. The process of check pointing involves 
periodically storing the checkpoint (in local or remote 
memory) during the execution of a task. In the event of a 
transient fault, execution is continued from the last valid 
checkpoint. One important parameter of check pointing 
is checkpoint overhead which is defined as the increase in 
the execution time. This overhead is dependent on
•	 Number of checkpoints N.
•	 Time for checkpoint capture and storage.
•	 Time for recovery from a checkpoint, Tr.
•	 Fault arrival rate λ.
Following are the assumptions regarding check pointing 
based transient fault-tolerance.
•	 Transient faults follow Poisson distribution with a 

rate of λ failures per unit time.
•	 Transient faults are point failures i.e. these faults in-

duce an error in the system and disappear.
•	 The probability of multiple transient faults in each 

checkpoint segment is negligible.
•	 Checkpoints can be inserted anywhere in the execu-

tion time. This assumption although difficult to ac-
complish in practice, gives a first order approximation 
on the problem at hand.

Figure 8.    Task Execution with and without Checkpoint.



M. Shanmugasundaram, R. Kumar and Kittur Harish Mallikarjun

Vol 8 (15) | July 2015 | www.indjst.org Indian Journal of Science and Technology 7

Figure 8 shows an example task execution with N 
checkpoints. Let T denote the time taken by the task for 
execution and Tc, the time taken by the task for execution 
in each checkpoint segment. Clearly, Tc = T/N+1. The 
probability of at least one fault in inter checkpoint interval 
(Tc + To) is 

Pe = 1-e−λ (Tc+To)					     (8)

Assuming fault arrival follows Poisson process, 
the probability of more than one fault in the inter 
checkpoint interval is negligible as λTc<<1. Using first 
order approximation, the expected length of checkpoint 
segment E [Tc] is calculated as

E [Tc] = P {no error in segment} ∗ normal checkpoint 
interval + P {error in segment} ∗ modified checkpoint 
interval.

2.9 Earliest Deadline First Scheduling 
It is a dynamic scheduling algorithm mainly used in real 
time system where tasks are placed in queue according 
to their priority. Whenever any event for scheduling 
happens (pausing of task, finishing of task, release of 
new task, etc.) the queue will starts its searching for the 
process having nearest deadline9. It is one of the optimal 
scheduling algorithms used in uniprocessor.
The scalability test for EDF is

0
1n

i

WiUb
Ii=

= <å 				    (9)

Where Wi=worst case computation time for n number 
of processes; Ii is the inter arrival time of each process; 
generally for kernels implementation this scheduling 
algorithm is used.

2.10 A Probabilistic Approach 
2.10.1 A Computational Model
Consider a task τi = (Ci, Ti), where Ci is a completion time 
and Ti is a period and we have to schedule that tasks. In 
this case pre-emption is permitted5. Let T = {T1, T2. . . 
Tn}  we will denote as periodic task of system. Utilization 
Ui = Ci / Ti. 

( ) i i
sum Ti T

i

t CU T
TÎ

=å 				    (10)

Now, the maximum utilization Umax(τ) of periodic task 
can be defined as follows

Umax (τ) = maxτiτ{Ui}				    (11)

2.10.2 Schedulability
The condition for scheduling instance I by EDF among m 
processor is

Usum(τ ) ≤ m s − (m − 1)Umax(τ)			   (12)

If transient fault will occur and it can be represented 
by exponential law.

We have pi = 1−e−Ci which depends on the task Ti.

( )1
1 ii

nn t
ii

P p
=

= -Õ 				    (13)

Where P is the probability of meeting the deadline 
during the interval [0, P] by assuring to meet the deadline 
by at least one copy of each task.

Two different problems have been taken into account.

Minimizing the Number of Processors

Consider a periodic system τ having Є as maximum 
tolerated probability of failure along with F a time frame. 
It will give outputs as ti the copies of each tasks τi and m 
minimum number of processor and it should meet below 
mentioned constraints (1) minimum m, (2) probability of 
failure during [0, F] must be lower than Є. 

Optimizing Reliability

Used for minimizing the failure probability of task in 
given time interval [0, F]. This algorithm will take task 
and size of multiprocessor as input along with F which is 
nothing but time frame. The following constraints should 
be met: (1) minimum Є. (2) The required number of 
processor must not be greater than m. At the beginning 
of the Algorithm only one copy of each task is available. 
Then as we will schedule the system, we will make copy 
for each task. Schedulability will be checked and after that 
failure probability of system.

Duplicating tasks: We have analysed 5 different solutions 
to increase number of copies for task
Increase all: By increasing copies for all tasks 
i ti ← ti + 1.
Min utilization 

i i

i

t Ci argmin
T

æ ö÷ç= ÷ç ÷ç ÷è ø				    (14)



Vol 8 (15) | July 2015 | www.indjst.org Indian Journal of Science and Technology8

Approaches for Transient Fault Tolerance in Multiprocessor -A State of Art

The number of processors increases with Usum. The 
drawback is that the probability of failure of tasks will not 
be taken into account.
Min failure: The task will be duplicated which has the 
highest probability to fail and increase ti such that 

( )it
ii argmax p= 				    (15)

Min failure-request: The task will be duplicated, which is 
having the highest probability of failure. To increase it we 
will follow below equation

it
i

i

Fi argmax p
T

æ ö÷ç= ÷ç ÷ç ÷è ø				    (16)
Min failure-utilization: The task will be duplicated which 
has higher failure probability and low utilization: The  ti 
will be increased in such a way that

i

i
t

i i

Ci argmin
T p

æ ö÷ç= ÷ç ÷ç ÷è ø				    (17)
2.11 Recovering from Transient Fault 
2.11.1 FT Algorithm
•	 Determines low list and low  list backup as well as 

high list and high list backup from task list
•	 High priority is given to the primary task 
•	 If backup copy is not assigned then corresponding 

task moved to the low list
•	 Schedule low list which is driven by fixed priority 

scheduling scheme. A backup copy is assigned to pro-
cessor which is different from processor with primary 
task.

•	 Schedule high list backup with low list backup on dif-
ferent processor from those of primary task. 
After the completion of primary task a backup copy in 

TH is allocated to the processor due to this we can utilize 
slack interval time without violating the execution time 
period deadline7,8. When the FT algorithm is applied to 
the processor task execution scheduled based on fixed 
priority driven scheduling algorithm. When fault occur 
on processor P at particular time tf, that task is adopted If 
transient fault occurs in task  ti of TH  a backup copy will 
be executed in same processor by using time redundancy 
we can minimize transient fault. When failure of task 
occurs we can easily recovered uncompleted task at TH 

by assigning backup copies of that particular task to the 
different processor. 

2.12 �EH - EDF (Energy Harvesting -Earliest 
Deadline First) 

Some real time systems are powered by renewable energy 
sources and rechargeable units like photo voltaic cells. 
In this case there is chance of transient fault due to the 
variations in energy source. So we have to consider the 
characteristics of energy source energy consumed by each 
task. In this scheduling decisions are taken at runtime 
without the prior knowledge of energy source by healthy 
processor10.

Table 1.    Analysis Table
Algorithm Advantage Dis-advantage
Feasibility shortest path: It minimizes the length of the queue. Complexity is high but 

it is more reliable.
This system is more complex

Linear time heuristic: Used in static system and Low complexity algorithm. Uses less 
number of nodes of graph.

We have to know the time of the task 
in the queue.

BCE: Backup will only run when primary fails More  execution time 
Checking Availability Time: We can calculate availability time of processor. Required alternate copy of task
Eliminating Idle Time: When the processor is found to be idle, choose an alternate 

for execution.
Requires more execution time 

RM-FT: The algorithm consists separate blocks for a task classification, 
task allocation and task scheduling and fault management.

Requires more memory since it 
creates backup of various tasks.

EDF Scheduling: This algorithm ensures that all the task complete within the 
deadline.

It can’t be used in real time system in 
industry.

PB Scheduling: Less processor time to provide fault tolerance. Hardware requirement is  more.
Probabilistic approach: Hardware requirement is  less. Required more execution time. 
EH-EDF: Fault tolerance with Energy minimization. Decision made without the prior 

knowledge of energy source.



M. Shanmugasundaram, R. Kumar and Kittur Harish Mallikarjun

Vol 8 (15) | July 2015 | www.indjst.org Indian Journal of Science and Technology 9

3.  Conclusion

We have considered fault-tolerant systems since system 
may fail to meet the deadline due to transient fault or 
any kind of error. We have done the analysis in order that 
tasks meet their deadline. The discussion showed that 
Min failure-request is the best one. It has been proved as 
optimal by 3 best probability based heuristics. It has been 
concluded that in RM-FT algorithm if j=1 the task can be 
schedulable, but if j=2 then the task is not schedulable. So 
the higher value of j makes the possibility of less schedulable 
in RM_FT. EDM mechanism can have the capability to 
detect the error before the execution of primary copy 
and hence we are provided with more slack. To provide 
better fault tolerance, deadline mechanism is used for 
periodic tasks which deal with modified BCE algorithm. 
A gradient-based technique (check pointing) has been 
proposed to improve the lifetime of a homogeneous 
reconfigurable multiprocessor system while optimizing 
for transient fault tolerance. Experiments conducted with 
variable fault-tolerance requirement demonstrate that 
the proposed solution improves lifetime by 10 percent 
to 60 percent as compared to the state-of-art transient 
fault tolerant technique. The gradient-based technique 
provides up to 500× reduction in design space exploration 
time with less than 5% distance from optimality.

4.  References
1.	 Asadi M, Menhaj MB, Yavari E. A modified BCE algorithm 

for fault-tolerance scheduling of periodic tasks in hard re-
al-time systems. Third Asia International Conference on 
Modelling & Simulation; 2009.

2.	 Ghosh S, Melhem R, Mosse D. Fault-tolerant scheduling 
on a hard real-time multiprocessor system. Proceedings of 
8th Inernational Parallel Processing Symposum; 1994 Apr. 
p. 775–82.

3.	 Pathan RM. Fault-tolerant real-time scheduling algorithm 
for tolerating multiple transient faults. 4th Internation-

al Conference on Electrical and Computer Engineering 
(ICECE 2006);  2006 Dec; Dhaka, Bangladesh.

4.	 Pan X, Yao X, Ping L. Research on real-time scheduling 
strategy for transient fault tolerance in NC system. Sixth In-
ternational Conference on Intelligent Systems Design and 
Applications (ISDA ‘06); 2006 Oct. p. 684–9. 

5.	 Berten V, Goossens J, Jeannot E.  A probabilistic approach 
for fault tolerant multiprocessor real-time scheduling. 20th 
International Parallel and Distributed Processing Sympo-
sium (IPDPS 2006). 2006 Apr.  

6.	 Mosse D, Melhem R, Ghosh S. Analysis of a fault-tolerant 
multiprocessor scheduling algorithm. 24th Internation-
al Symposium on Fault-Tolerant Computing (FTCS-24). 
1994. p. 16–25. 

7.	 Pandya M, Malek, Miroslaw. Minimum achievable utiliza-
tion for fault-tolerant processing of periodic tasks.  IEEE 
Transactions on Computers. 1998 Oct; 47(10):1102–12.

8.	 Goo HW. A fault-tolerant scheduling scheme for hybrid 
tasks in distributed real-time systems. Third IEEE Work-
shop on Software Technologies for Future Embedded and 
Ubiquitous Systems (SEUS 05); 2005.

9.	 Chen Y, Yu X, Xiong G. Fault-tolerant earliest deadline first 
scheduling with resource reclaim. Proceedings of Fifth In-
ternational Conference on Algorithms and Architectures 
for Parallel Processing; 2002 Oct. 278–85.

10.	 Shanmugasundaram M, Kumar R, Kittur HM. A survey of 
uniprocessor transient fault. International Journal of Ap-
plied Engineering Research. 2014; 9(21):8329–36.

11.	 Wei T, Mishra P, Wu K, Liang H. Fixed-priority allocation 
and scheduling scheme for energy-efficient fault-tolerance 
in real time multiprocessor systems. IEEE Transactions on 
Parallel and Distributed Systems. 2008 Nov; 19(11):1511–
26.

12.	 Kim H, Lee S, Jeong B-S. An improved feasible shortest path 
real-timefault-tolerant scheduling algorithm. Proceedings 
of Seventh International Conference on Real-Time Com-
puting Systems and Applications. 2000 Dec. p. 363–7. 

13.	 Beitollahi H, Deconinck G. Fault-tolerant rate-monotonic 
scheduling algorithm in uniprocessor embedded systems. 
12th Pacific Rim International Symposium on Dependable 
Computing (PRDC’06); 2006.

14.	 Mosse D. Enhancing real-time schedules to tolerate tran-
sient faults. Proceedings of 16th IEEE Real-Time Systems 
Symposium REAL-95; 1995.


