Convergence Theorems for Nonspreading Type
Mappings in Hilbert Spaces

Masoumeh Beheshti and Mahdi Azhini*

ISSN (Print): 0974-6846 ISSN (Online): 0974-5645

Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran; m.azhini@srbiau.ac.ir, beheshti7@yahoo.com

Abstract

In this paper first we give a weak convergence ergodic theorem for K-strictly pseudo-nonspreading and nonspreading mapping in Ishikawa iteration scheme, motivated by Kurokawa and Takahashi in⁹. Then we deal with a strong convergence theorem for nonspreading mappings in a Hilbert space. Our results improve and extend Kurokawa and Takahashi result.

Keywords: Fixed Point, k-Strictly Peseudo-Nonspreading Mapping, Nonspreading Mapping, Strong Convergence, Weak Convergence

1. Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. A mapping $T: C \rightarrow C$ is said to be nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. The set of fixed points of T is denoted by F(T). A mapping $T: C \rightarrow C$ with $F(T) \ne \phi$ is called quasi-nonexpansive if

$$|| x - Ty || \le || x - y ||$$

for all $x \in F(T)$ and $y \in C$. It is well known that the set of fixed points of a quasi-nonexpansive mapping T is closed and convex, see⁶. Recently, Kohosaka and Takahashi⁸ introduced the following nonlinear mapping: Let E be a smooth, strictly convex and reflexive Banach space, let E be the duality mapping of E and let E be a nonempty closed convex subset of E. Then, a mapping E is said to be nonspreading if

$$\phi(Tx, Ty) + \phi(Ty, Tx) \le \phi(Tx, y) + \phi(Ty, x)$$

for all $x, y \in C$, where $\phi(y, x) = ||x||^2 - 2(x, Jy) + ||y||^2$ for all $x, y \in E$. They considered such mapping to study the resolvents of a maximal monotone operator in the Banach space. In the case when E is a Hilbert space, we know that $\phi(x, y) = ||x-y||^2$ for all $x, y \in E$. So, a nonspreading mapping $T: C \rightarrow C$ in a Hilbert space H is defined as follows:

$$2 || Tx - Ty ||^{2} \le || Tx - y ||^{2} + || Ty - x ||^{2}$$
 (1)

It is shown in⁵ that (1) is equivalent to

$$||Tx - Ty||^2 \le ||x - y||^2 + 2 < x - Tx, y - Ty>,$$
 (2)

for all 1 x, $y \in C$. Observe that if T is nonspreading and $F(T) \neq f$, then T is quasi-nonexpansive.

A mapping $T: C \rightarrow C$ is said to be k-strictly pseudononspreading if there exsists $k \in [0, 1]$ such that

$$||Tx - Ty||^{2} \le ||x - y||^{2} + 2 < x - Tx, y - Ty > + k ||x - (y - Ty)||^{2}$$
(3)

for all $x, y \in C$. Clearly, every nonspreading mapping is k-strictly pseudo-nonspreading.

The following example shows that the class of k-strictly pseudo-nonspreading mapping is more general than the class of nonspreading mapping.

1.1 Example

(See¹¹). Let \mathbb{R} denote the real numbers with the usual norm. Let $T: \mathbb{R} \to \mathbb{R}$ be defined for each $x \in \mathbb{R}$ by

$$Tx = \begin{cases} x & \text{if } x \in (-\infty, 0), \\ -2x & \text{if } x \in [0, \infty). \end{cases}$$

Then, *T* is k-strictly pseudo-nonspreading but not non-spreading mapping.

^{*}Author for correspondence

1.2 Lemma

(See¹¹). Let *C* be a nonempty closed convex subset of real Hilbert space *H*, and $T: C \rightarrow C$ be a k-strictly pseudo-non-spreading mapping. If $F(S) \neq \phi$, then it is closed and convex.

Some iteration processes are often used to approximate a fixed point of a nonexpansive mapping. The first iteration processes is known as Halpern iteration process³. The following strong convergence theorem of Halpern's type was proved by Wittmann: for any $x_1 = x \in C$, define a sequence $\{x_n\}$ by

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) Tx_n \qquad n \in \mathbb{N} \cup \{0\}$$

for all $n \in \mathbb{N}$, where the sequence $\{a_n\}_{n=0}^{\infty}$ is in [0,1], $\alpha_n \to 0$, $\sum_{n=0}^{\infty} \alpha_n x = \infty$ and $\sum_{n=0}^{\infty} |\alpha_n - \alpha_{n+1}| < \infty$. Then $\{x_n\}$ converges strongly to a fixed point of T.

The second iteration process is introduced by Mann¹⁰. We also know the following weak convergence theorem of Mann's type: for any $x_1 = x \in C$, define a sequence $\{x_n\}$ by

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n) Tx_n \qquad n \in \mathbb{N} \cup \{0\}$$

for all $n \in \mathbb{N}$, where the sequence $\{a_n\}_{n=0}^{\infty}$ is in [0,1] and $\sum_{n=0}^{\infty} |a_n - a_{n+1}| < \infty$. Then $\{x_n\}$ converges weakly to a fixed point of T.

The third iteration process⁷ is defined recursively by

$$\begin{cases} y_n = \beta_n x_n + (1 - \beta_n) T x_{n,} \\ x_{n+1} = a_n x_n + (1 + a_n) T y_n, \end{cases}$$

where the initial guess x_0 is taken in C arbitrarily and the sequences $\{a_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ are in [0,1].

We know the following first nonlinear ergodic theorem in a Hilbert space from Baillon².

1.3 Theorem

Let C be a nonempty bounded closed convex subset of H and let $T: C \rightarrow C$ be nonexpansive. Then for any $x \in C$, $S_n x = \frac{1}{n} \sum_{k=0}^{n-1} T^k x$ converges weakly to an element $z \in F(T)$.

Kurokawa and Takahashi in proved the following weak convergence nonlinear ergodic theorem of Baillon's type for nonspreading mappings in a Hilbert space. They used Halpern's iteration scheme.

1.4 Theorem

(See 9). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping from C into itself. Define two sequences $\{x_n\}$ and $\{z_n\}$ in C as follows: $x_n = x \in C$ and

$$\begin{cases} x_{n+1} = a_n x_n + (1 - a_n) T x_n, \\ z_n = \frac{1}{n} \sum_{k=1}^{n} x_n, \end{cases}$$

for all $n \in \mathbb{N}$, where $\alpha_n \to 0$ and $0 \le \alpha_n \le 1$. If $F(T) \ne \phi$, then $\{z_n\}$ converges weakly to $z \in F(T)$, where $z = \lim_{n \to \infty} Px_n$ and P is the metric projection of H onto F(T).

In particular, for any $x \in C$, define

$$S_n x = \frac{1}{n} \sum_{k=0}^{n-1} \text{ and } T^k x$$

Then $\{S_n x\}$ converges weakly to $z \in F(T)$, where $z = \lim_{n \to \infty} PT^n x$.

The following theorem, is the strong convergence theorem for nonspeading mappings in a Hilbert space that Kurokawa and Takahashi proved.

1.5 Theorem

(See°). Let C be a nonempty closed convex subset of a real Hilbert space H. Let T be a nonspreading mapping from C into itself. Let $u \in C$ and define two sequences $\{x_n\}$ and $\{z_n\}$ in C as follows: $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = a_n u + (1 - a_n) z_n, \\ z_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k x_n, \end{cases}$$

for all $n \in \mathbb{N}$, where, $0 \le \alpha_n \le 1$, $\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$. If $F(T) \ne \phi$, then $\{x_n\}$ and $\{z_n\}$ converge strongly to Pu, where P is the metric projection of H onto F(T).

Recently Kurokawa and Takahashi in⁹ obtained a weak mean convergence ergodic theorem of Baillon's type for nonspreading mappings in a Hilbert space. They used Halpern's iteration scheme for proving their theorem. In this paper motivated by them, first we give a nonlinear ergodic theorem for k-strictly peseudo-nonspreading and nonspreading mapping in Ishikawa iteration scheme. Then we deal with a strong convergence theorem for nonspreading mappings in a Hilbert space. These two theorems improve and generalize Kurokawa-Takahashi theorems.

2. Preliminaries

Let *H* be a real Hilbert space with inner product $\langle .,. \rangle$ and norm ||.||, respectively. In a Hilbert space H, it is known that

i)
$$|| tx + (1-t) y ||^2 = t || x ||^2 + (1-t) || y ||^2 - t$$

 $(1-t) || x-y ||^2$ (4) for all $x, y \in H$ and for all $t \in [0,1]$ see⁴.

ii)
$$||x+y||^2 \le ||x||^2 + 2(y, x+y) \quad \forall x, y \in H,$$
 (5)

iii)
$$||y||^2 - ||x||^2 \le 2(y - x, y)$$
 $\forall x, y \in H$.

See¹⁴.

Let $\{x_n\}$ be a sequence in H and $x \in H$. Weak convergence of $\{x_n\}$ is denoted by $x_n \underline{w} x$ and strong convergence by $x_n \rightarrow x$. Let H be a nonempty closed convex subset of a real Hilbert space H. The nearest point projection of H onto C is denoted by P_s , that is, for all $x \in H$ and $Y \in C$

$$||x - P_{c}x|| \le ||x - y||.$$

Such P_c is called the metric projection of H onto C. It is known that for each $x \in H$

$$\langle x - P_C x, y - P_C x \rangle \le 0 \quad \forall y \in C.$$
 (6)

See¹² for more details.

2.1 Lemma

See¹. Let $\{S_n\}$ be a sequence of non-negative real numbers satisfying the condition

$$S_{n+1} \leq (1 - \alpha_n) S_n + \alpha_n \gamma_n + \theta_n$$

where $\{\alpha_{u}\}$, $\{\theta_{u}\}$ and $\{\gamma_{u}\}$ are real sequences such that:

i)
$$\alpha_n \subset [0,1]$$
 and $\sum_{k=0}^{\infty} \alpha_n = \infty$, ii) $\limsup \gamma_n \le 0$,

iii)
$$\theta_n \ge 0$$
 for all $n \in \mathbb{N}$ and $\sum_{k=0}^{\infty} \theta_n < \infty$.

Then, $\lim_{n\to\infty} s_n = 0$.

2.2 Lemma¹³

See¹³. Let C be a nonempty closed convex subset of a real Hilbert space *H*. Let *P* be the metric projection of *H* onto C and let $\{x_n\}$ be a sequence in H. If $||x_{n+1} - q|| \le ||x_n - q||$, for all $q \in C$ and $n \in \mathbb{N}$, then $\{Px_n\}$ converges strongly.

3. Main Results

3.1 Theorem

Let *H* be a Hilbert space, and let *C* be a nonempty closed and convex subset of H. Let $T: C \rightarrow C$ be a nonspreading mapping with $F(T) \neq \emptyset$ and $S: C \rightarrow C$ be a k-strictly peseudo-nonspreading mapping with $F(S) \neq \emptyset$, such that F(T) \cap F (S) $\neq \phi$. Suppose that $\{x_n\}$, $\{y_n\}$ and $\{u_n\}$ are sequences generated by $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = a_n x_n + (1 - a_n) T y_n, \\ y_n = \beta_n x_n + (1 - \beta_n) S x_n, \\ u_n = \frac{1}{n} \sum_{k=1}^{n} x_k \end{cases}$$

for all $n \in \mathbb{N}$, where $\{a_n\}$ and $\{\beta_n\}$ are sequences of (0,1)and $0 < a < a_n < b < 1, 0 \le k < c < \beta_n < d < 1$ for some *a*, *b*, c, d > 0. Then $\{u_n\}$ converges weakly to $u \in F(T) \cap F(S)$, where $u = \lim_{n \to \infty} Px_n$ and P is the metric projection of H onto $F(T) \cap F(S)$.

3.1.1 **Proof**

We divide the proof into 6 steps.

3.1.1.1 Step 1

We first show that if $z \in F(T) \cap F(S)$, then $\lim_{n \to \infty} ||x_n - z||$ exists and $\{x_n\}$ is bounded. Since $F(T) \cap F(S) \neq \emptyset$ and T is nonspreading, T is quasi nonexpansive, then we have

$$||x_{n+1} - z|| = ||a_n x_n + (1 - a_n) Ty_n - z||$$

$$\leq a_n ||x_n - z|| + (1 - a_n) || Ty_n - z||$$

$$\leq a_n ||x_n - z|| + |(1 - a_n) ||y_n z||$$
(7)

Putting $V_{\parallel} = \beta_{\parallel} I + (1 - \beta_{\parallel}) S$, from (4) and S as a k-strictly peseudo-nonspreading mapping. For all $x, y \in C$ we have

$$||V_{n}x - V_{n}y||^{2} = ||\beta_{n}(x - y) + (1 - \beta_{n})(Sx - Sy)||^{2}$$

$$= \beta_{n} ||x - y||^{2} + (1 - \beta_{n})||(Sx - sy)||^{2}$$

$$-\beta_{n}(1 - \beta_{n})||x - Sx - (y - Sy)||^{2}$$

$$\leq \beta_{n} ||x - y||^{2} + (1 - \beta_{n})(||x - y||^{2} + 2\langle x - Sx, y - Sy\rangle)$$

$$+ k ||x - Sx - (y - Sy)||^{2})$$

$$-\beta_{n}(1 - \beta_{n})||x - Sx - (y - Sy)||^{2}$$

$$= ||x - y||^{2} + 2(1 - \beta_{n})\langle x - Sx, y - Sy\rangle - (1 - \beta_{n})(\beta_{n} - k)$$

$$||x - Sx - (y - Sy)||^{2} \leq ||x - y||^{2} + 2(1 - \beta_{n})\langle x - Sx, y - Sy\rangle$$

$$= ||x - y||^{2} + \frac{2}{1 - \beta_{n}}||x - V_{n}x, y - V_{n}y.$$
(8)

Since $V_{,z} = \beta_{,z} + (1 - \beta_{,z})$ Sz, then from (8) we have

$$||Y_n - z|| = ||V_n x - z|| = ||V_n x - V_n z|| \le ||x_n - z||, \quad (9)$$

therefore, by (7) and (9)

$$||x_{n+1} - z|| \le a_n ||x_n - z|| + (1 - a_n) ||x_n - z|| = ||x_n - z||.$$

So, it yields that $\lim_{n\to\infty} ||x_n - z||$ exist and hence $\{x_n\}$, $\{Sx_n\}$ $\{y_n\}$ and $\{Ty_n\}$ is bounded.

3.1.1.2 Step 2

We claim that

$$\begin{split} &\frac{1}{n} \| \left\| x_{n+1} - Ty \right\|^2 \leq \| \left\| x_n - Ty \right\|^2 + \| \left\| Ty - y \right\|^2 + 2 \langle u_n - Ty, Ty - y \rangle \\ &+ \frac{1}{n} \sum_{k=1}^n \| \left\| Sx_k - x_k \right\|^2 + \frac{2}{n} \sum_{k=1}^n \| \left\| Sx_k - x_k \right\| \| \left\| x_k - y \right\| \\ &+ \frac{2}{n} \sum_{k=1}^n \| \left\| Sx_k - x_k \right\| \| \left\| y - Ty \right\| \\ &+ \frac{2}{n} \sum_{k=1}^n \| \left\| x_k - Ty_k \right\| \| \left\| y - Ty \right\| \end{split}$$

From (4), (2) and since $0 < a_n < 1$ we have for all $y \in C$ and $k \in \mathbb{N}$,

$$\begin{split} & \mid\mid x_{k+1} - Ty \mid\mid^{2} = \mid\mid \alpha_{k} x_{k} + (1 - \alpha_{k}) Ty_{k} - Ty \mid\mid^{2} \\ & = \mid\mid \alpha_{k} (x_{k} - Ty) + (1 - \alpha_{k}) (Ty_{k} - Ty) \mid\mid^{2} \\ & = \alpha_{k} \mid\mid x_{k} - Ty \mid\mid^{2} + (1 - \alpha_{k}) \mid\mid Ty_{k} - Ty \mid\mid^{2} - \alpha_{k} (1 - \alpha_{k}) \\ & \mid\mid x_{k} - Ty_{k} \mid\mid^{2} \leq \alpha_{k} \mid\mid x_{k} - Ty \mid\mid^{2} + (1 - \alpha_{k}) \mid\mid Ty_{k} - Ty \mid\mid^{2} \\ & \leq \alpha_{k} \mid\mid x_{k} - Ty \mid\mid^{2} + (1 - \alpha_{k}) [\mid\mid y_{k} - y \mid\mid^{2} + 2\langle y_{k} - Ty_{k}, y - Ty \rangle] \end{split}$$

Since

$$||y_k - y||^2 = ||\beta_k x_k + (1 - \beta_k) S x_k - y||^2$$

$$\leq \beta_k ||x_k - y||^2 + (1 - \beta_k) ||S x_k - y||^2,$$

so, we have

$$\begin{aligned} \|x_{k+1} - Ty\|^{2} &\leq \alpha_{k} \|x_{k} - Ty\|^{2} + (1 - \alpha_{k})\beta_{k} \|x_{k} - y\|^{2} \\ &+ (1 - \alpha_{k})(1 - \beta_{k}) \|Sx_{k} - y\|^{2} \\ &+ 2(1 - \alpha_{k})\langle y_{k} - Ty_{k}, y - Ty\rangle \\ &= \alpha_{k} \|x_{k} - Ty\|^{2} + (1 - \alpha_{k})\beta_{k} \|x_{k} - y\|^{2} \\ &+ (1 - \alpha_{k})(1 - \beta_{k}) \|Sx_{k} - x_{k} + x_{k} - y\|^{2} \\ &+ 2(1 - \alpha_{k})\langle y_{k} - Ty_{k}, y - Ty\rangle \\ &\leq \alpha_{k} \|x_{k} - Ty\|^{2} + (1 - \alpha_{k})\beta_{k} \|x_{k} - y\|^{2} \\ &+ (1 - \alpha_{k})(1 - \beta_{k}) \|Sx_{k} - x_{k}\|^{2} \\ &+ (1 - \alpha_{k})(1 - \beta_{k}) \|x_{k} - y\|^{2} \\ &+ 2(1 - \alpha_{k})(1 - \beta_{k})\langle Sx_{k} - x_{k}, x_{k} - y\rangle \\ &+ 2(1 - \alpha_{k})\langle y_{k} - Ty_{k}, y - Ty\rangle \\ &\leq \alpha_{k} \|x_{k} - Ty\|^{2} + (1 - \alpha_{k}) \|x_{k} - y\|^{2} \\ &+ (1 - \alpha_{k})(1 - \beta_{k}) \|Sx_{k} - x_{k}\|^{2} \\ &+ 2(1 - \alpha_{k})(1 - \beta_{k}) \|Sx_{k} - x_{k}\|^{2} \\ &+ 2(1 - \alpha_{k})(1 - \beta_{k})\langle Sx_{k} - x_{k}, x_{k} - y\rangle \\ &+ 2(1 - \alpha_{k})\langle y_{k} - Ty_{k}, y - Ty\rangle. \end{aligned} \tag{10}$$

But, we have

$$||x_{k} - y||^{2} = ||x_{k} - Ty + Ty - y||^{2}$$

$$= ||x_{k} - Ty||^{2} + ||Ty - y||^{2} + 2\langle x_{k} - Ty, Ty - y \rangle. \quad (11)$$

So, from (10) and (11)

$$||x_{k+1} - Ty||^{2} \le \alpha_{k} ||x_{k} - Ty||^{2}$$

$$+ (1 - \alpha_{k}) ||x_{k} - Ty||^{2}$$

$$+ (1 - \alpha_{k}) ||Ty - y||^{2}$$

$$+ 2(1 - \alpha_{k}) \langle x_{k} - Ty, Ty - y \rangle$$

$$+ (1 - \alpha_{k}) (1 - \beta_{k}) ||Sx_{k} - x_{k}||^{2}$$

$$+ 2(1 - \alpha_{k}) (1 - \beta_{k}) \langle Sx_{k} - x_{k}, x_{k} - y \rangle$$

$$+ 2(1 - \alpha_{k}) \langle y_{k} - Ty_{k}, y - Ty \rangle.$$

$$(12)$$

But we have

$$\langle y_k - Ty_k, y - Ty \rangle = \langle y_k - x_k, y - Ty \rangle$$

$$+ \langle x_k - Ty_k, y - Ty \rangle$$

$$= \langle \beta_k x_k + (1 - \beta_k) Sx_k - x_k, y - Ty \rangle$$

$$+ \langle x_k - Ty_k, y - Ty \rangle$$

$$= \beta_k \langle x_k - x_k, y - Ty \rangle$$

$$+ (1 - \beta_k) \langle Sx_k - x_k, y - Ty \rangle$$

$$+ \langle x_k - Ty_k, y - Ty \rangle$$

Thus, by (12)

$$\begin{split} \| x_{k+1} - Ty \|^2 & \leq \alpha_k \| x_k - Ty \|^2 \\ & + \left(1 - \alpha_k \right) \| x_k - Ty \|^2 + \left(1 - \alpha_k \right) \| Ty - y \|^2 \\ & + 2 \left(1 - \alpha_k \right) \langle x_k - Ty, Ty - y \rangle \\ & + \left(1 - \alpha_k \right) \left(1 - \beta_k \right) \| Sx_k - x_k \|^2 \\ & + 2 \left(1 - \alpha_k \right) \left(1 - \beta_k \right) \langle Sx_k - x_k, x_k - y \rangle \\ & + 2 \left(1 - \alpha_k \right) \left[\left(1 - \beta_k \right) \langle Sx_k - x_k, y - Ty \rangle + \langle x_k - Ty_k, y - Ty \rangle \right]. \end{split}$$

Therefore

$$\begin{split} || \ x_{k+1} - Ty \ ||^2 & \leq || \ x_k - Ty \ ||^2 + \left(1 - \alpha_k\right) || \ Ty - y \ ||^2 \\ & + 2 \left(1 - \alpha_k\right) \langle x_k - Ty, y - Ty \rangle \\ & + || \ Sx_k - x_k \ ||^2 + 2 \langle Sx_k - x_k, x_k - y \rangle \\ & + 2 \langle Sx_k - x_k, y - Ty \rangle \\ & + 2 \langle x_k - Ty, Ty - y \rangle. \end{split}$$

Summing these inequalities from k = 1 to n and dividing by n, Since $\{a_n\}$ and $\{\beta_n\}$ are sequences in (0,1), we have

$$\begin{split} &\frac{1}{n} \sum_{k=1}^{n} \|x_{k+1} - Ty\|^2 \leq \frac{1}{n} \sum_{k=1}^{n} \|x_k - Ty\|^2 + \frac{1}{n} \sum_{k=1}^{n} \|Ty - y\|^2 \\ &+ \frac{2}{n} \sum_{k=1}^{n} \langle x_k - Ty, Ty - y \rangle + \frac{1}{n} \sum_{k=1}^{n} \|Sx_k - x_k\|^2 \\ &+ \frac{2}{n} \sum_{k=1}^{n} \langle Sx_k - x_k, x_k - y \rangle + \frac{2}{n} \sum_{k=1}^{n} \langle Sx_k - x_k, y - Ty \rangle \\ &+ \frac{2}{n} \sum_{k=1}^{n} \langle x_k - Ty_k, y - Ty \rangle. \end{split}$$

So, we have

$$\frac{1}{n} \|x_{n+1} - Ty\|^{2} \le \|x_{n} - Ty\|^{2} + \|Ty - y\|^{2}
+ 2\langle u_{n} - Ty, Ty - y \rangle + \frac{1}{n} \sum_{k=1}^{n} \|Sx_{k} - x_{k}\|^{2}
+ \frac{2}{n} \sum_{k=1}^{n} \|Sx_{k} - x_{k}\| \|x_{k} - y\|
+ \frac{2}{n} \sum_{k=1}^{n} \|Sx_{k} - x_{k}\| \|y - Ty\|
+ \frac{2}{n} \sum_{k=1}^{n} \|x_{k} - Ty_{k}\| \|y - Ty\|.$$
(13)

3.1.1.3 Step 3

We prove that

$$\frac{1}{n} ||x_{n+1} - Sy||^{2} \le \frac{1}{n} ||x_{1} - Sy||^{2} + \frac{1}{n} \sum_{k=1}^{n} ||x_{k} - Sx_{k}||^{2}
+ \frac{2}{n} \sum_{k=1}^{n} ||Ty_{k} - x_{k}|| ||x_{k} - Sx_{k}||
+ \frac{(1+k)}{n} \sum_{k=1}^{n} ||Sy - y||^{2}
+ 2\langle u_{n} - Sy, Sy - y \rangle
+ \frac{2}{n} \sum_{k=1}^{n} ||x_{k} - Sx_{k}|| ||y - Sy||
+ \frac{1}{n} \sum_{k=1}^{n} ||x_{k} - Sx_{k}|| ||Sy - y||
+ \frac{2}{n} \sum_{k=1}^{n} ||Ty_{k} - x_{k}|| ||Sx_{k} - Sy||
+ \frac{2}{n} \sum_{k=1}^{n} ||x_{k} - Sx_{k}|| ||Sx_{k} - Sy||
+ \frac{2}{n} \sum_{k=1}^{n} ||x_{k} - Sx_{k}|| ||Sx_{k} - Sy||.$$

We have for all $y \in C$ and $k \in \mathbb{N}$,

$$||x_{k+1} - Sy||^2 = ||\alpha_k x_k + (1 - \alpha_k) Ty_k - Sy||^2$$

$$\leq \alpha_k ||x_k - Sy||^2 + (1 - \alpha_k) ||Ty_k - Sy||^2$$

$$= \alpha_k ||x_k - Sy||^2 + (1 - \alpha_k)$$

$$||Ty_k - Sx_k + Sx_k - Sy||^2$$

$$\leq \alpha_k ||x_k - Sy||^2 + (1 - \alpha_k) [||Ty_k - Sx_k||^2$$

$$+ ||Sx_k - Sy||^2 + 2\langle Ty_k - Sx_k, Sx_k - Sy \rangle]$$

$$\leq \alpha_k ||x_k - Sy||^2 + (1 - \alpha_k)$$

$$|||Ty_k - x_k||^2 + ||x_k - Sx_k||^2$$

$$+ ||x_k - y||^2 + 2\langle x_k - Sx_k, y - Sy \rangle$$

$$+ k ||x_k - Sx_k - (y - Sy)||^2$$

$$+ 2\langle Ty_k - x_k, Sx_k - Sy \rangle$$

$$+ 2\langle x_k - Sx_k, Sx_k - Sy \rangle].$$

But we have

$$||x_k - y||^2 = ||x_k - Sy||^2 + ||Sy - y||^2 + 2\langle x_k - Sy, Sy - y \rangle,$$

so

$$\begin{split} \left\| Ty_{k} - x_{k} \right\|^{2} \\ + \left\| x_{k} - Sx_{k} \right\|^{2} + 2 \left(Ty_{k} - x_{k}, x_{k} - Sx_{k} \right) \\ + \left(1 - \alpha_{k} \right) \left[\left\| x_{k} - Sy \right\|^{2} + \left\| Sy - y \right\|^{2} + 2 \left\langle x_{k} - Sy, Sy - y \right\rangle \right] \\ + 2 \left(1 - \alpha_{k} \right) \left\langle x_{k} - Sx_{k}, y - Sy \right\rangle + k \left(1 - \alpha_{k} \right) \left\| x_{k} - Sx_{k} \right\|^{2} \\ + k \left(1 - \alpha_{k} \right) \left\| y - Sy \right\|^{2} + 2 k \left(1 - \alpha_{k} \right) \left\langle x_{k} - Sx_{k}, Sy - y \right\rangle \\ + 2 \left(1 - \alpha_{k} \right) \left\langle Ty_{k} - x_{k}, Sx_{k} - Sy \right\rangle \\ + 2 \left(1 - \alpha_{k} \right) \left\langle x_{k} - Sx_{k}, Sx_{k} - Sy \right\rangle. \end{split}$$

Therefore

$$\begin{split} || \ x_{k+1} - Sy \ ||^2 & \leq a_k \ || \ x_k - Sy \ ||^2 + \left(1 - a_k\right) || \ Ty_k - x_k \ ||^2 \\ & + \left(1 - a_k\right) || \ x_k - Sx_k \ ||^2 \\ & + 2 \left(1 - a_k\right) \langle Ty_k - x_k, x_k - Sx_k \rangle \\ & + \left(1 - a_k\right) (1 + k) || \ Sy - y \ ||^2 \\ & + 2 \left(1 - a_k\right) \langle x_k - Sy, Sy - y \rangle \\ & + 2 \left(1 - a_k\right) \langle x_k - Sx_k, y - Sy \rangle \\ & + k \left(1 - a_k\right) || \ x_k - Sx_k \ ||^2 \\ & + 2 k \left(1 - a_k\right) \langle x_k - Sx_k, Sy - y \rangle \\ & + 2 k \left(1 - a_k\right) \langle Ty_k - x_k, Sx_k - Sy \rangle \\ & + 2 \left(1 - a_k\right) \langle x_k - Sx_k, Sx_k - Sy \rangle \end{split}$$

$$\leq ||x_{k} - Sy||^{2} + ||Ty_{k} - x_{k}||^{2} + ||x_{k} - Sx_{k}||^{2}$$

$$+ 2\langle Ty_{k} - x_{k}, x_{k} - Sx_{k} \rangle + (1+k)||Sy - y||^{2}$$

$$+ 2\langle x_{k} - Sy, Sy - y \rangle$$

$$+ 2\langle x_{k} - Sx_{k}, y - Sy \rangle + ||x_{k} - Sx_{k}||^{2}$$

$$+ 2\langle x_{k} - Sx_{k}, Sy - y \rangle$$

$$+ 2\langle Ty_{k} - x_{k}, Sx_{k} - Sy \rangle$$

$$+ 2\langle x_{k} - Sx_{k}, Sx_{k} - Sy \rangle .$$

Summing these inequalities from k = 1 to n and dividing by n, Since $\{a_n\}$ and $\{\beta_n\}$ are sequences in (0, 1), we have

$$\begin{split} &\frac{1}{n} \sum_{k=1}^{n} \|x_{k+1} - Sy\|^{2} \leq \frac{1}{n} \sum_{k=1}^{n} \|x_{k+1} - Sy\|^{2} \\ &+ \frac{1}{n} \sum_{k=1}^{n} \|Ty_{k} - x_{k}\|^{2} \\ &+ \frac{1}{n} \sum_{k=1}^{n} \|x_{k} - Sx_{k}\|^{2} + \frac{2}{n} \sum_{k=1}^{n} \langle Ty_{k} - x_{k}, x_{k} - Sx_{k} \rangle \\ &+ \frac{(1+k)}{n} \sum_{k=1}^{n} \|Sy - y\|^{2} + \frac{2}{n} \sum_{k=1}^{n} \langle x_{k} - Sy, Sy - y \rangle \\ &+ \frac{2}{n} \sum_{k=1}^{n} \langle x_{k} - Sx_{k}, y - Sy \rangle + \frac{1}{n} \sum_{k=1}^{n} \|x_{k} - Sx_{k}\|^{2} \\ &+ \frac{2}{n} \sum_{k=1}^{n} \langle x_{k} - Sx_{k}, Sy - y \rangle + \frac{2}{n} \sum_{k=1}^{n} \langle Ty_{k} - x_{k}, Sx_{k} - Sy \rangle \\ &+ \frac{2}{n} \sum_{k=1}^{n} \langle x_{k} - Sx_{k}, Sx_{k} - Sy \rangle. \end{split}$$

So we have

$$\frac{1}{n} \|x_{n+1} - Sy\|^{2} \le \frac{1}{n} \|x_{1} - Sy\|^{2} + \frac{1}{n} \sum_{k=1}^{n} \|x_{k} - Sx_{k}\|^{2}
+ \frac{2}{n} \sum_{k=1}^{n} \|Ty_{k} - x_{k}\| \|x_{k} - Sx_{k}\|
+ \frac{(1+k)}{n} \sum_{k=1}^{n} \|Sy - y\|^{2} + 2\langle U_{n} - Sy, Sy - y \rangle
+ \frac{2}{n} \sum_{k=1}^{n} \|x_{k} - Sx_{k}\| \|y - Sy\| + \frac{1}{n} \sum_{k=1}^{n} \|x_{k} - Sx_{k}\|^{2}
+ \frac{2}{n} \sum_{k=1}^{n} \|x_{k} - Sx_{k}\| \|Sy - y\|
+ \frac{2}{n} \sum_{k=1}^{n} \|Ty_{k} - x_{k}\| \|Sx_{k} - Sy\|
+ \frac{2}{n} \sum_{k=1}^{n} \|x_{k} - Sx_{k}\| \|Sx_{k} - Sy\|$$

$$(14)$$

3.1.1.4 Step 4

We claim that $\lim_{n\to\infty} ||x_n - Sx_n|| = 0$ and $\lim_{n\to\infty} ||x_n - Ty_n|| = 0$.

From (8) we have,

$$||V_{n}x - V_{n}y||^{2} \le ||x - y||^{2} + 2(1 - \beta_{n})\langle x - Sx, y - Sy \rangle$$

$$-(1 - \beta_{n})(\beta_{n} - k)||x - Sx - (y - Sy)||^{2}$$

$$= ||x - y||^{2} + 2(1 - \beta_{n})\langle x - Sx, y - Sy \rangle$$

$$-(1 - \beta_{n})(\beta_{n} - k)||x - Sx||^{2}$$

$$-(1 - \beta_{n})(\beta_{n} - k)||y - Sy||^{2}$$

$$-2(1 - \beta_{n})(\beta_{n} - k)\langle x - Sx, y - Sy \rangle.$$
(15)

Putting in (15) x = x and y = z so we have,

$$\begin{split} || \, V_n x_n - z \, ||^2 \leq &|| \, x_n - z \, ||^2 + 2 \left(1 - \beta_n \right) \left\langle \, x_n - S x_n, z - S z \right\rangle \\ &- \left(1 - \beta_n \right) \left(\beta_n - k \right) || \, x_n - S x_n - \left(z - S z \right) ||^2 \\ &- \left(1 - \beta_n \right) \left(\beta_n - k \right) || \, S z - z \, ||^2 \\ &- 2 \left(1 - \beta_n \right) \left(\beta_n - k \right) \left\langle \, x_n - S x_n, z - S z \right\rangle. \end{split}$$

Since $z \in F(S) \cap F(T)$

$$||y_{n} - z||^{2} = ||V_{n}x_{n} - z||^{2} \le ||x_{n} - z||^{2}$$
$$-(1 - \beta_{n})(\beta_{n} - k)||x_{n} - Sx_{n}||^{2}$$
(16)

We have,

$$\begin{split} \parallel x_{n+1} - z \parallel^2 &= \parallel \alpha_n x_n + \left(1 - \alpha_n\right) T y_n - z \parallel^2 \\ &\leq \alpha_n \parallel x_n - z \parallel^2 + \left(1 - \alpha_n\right) \parallel T y_n - z \parallel^2 \\ &- \alpha_n \left(1 - \alpha_n\right) \parallel x_n - T y_n \parallel^2 \\ &\leq \alpha_n \parallel x_n - z \parallel^2 + \left(1 - \alpha_n\right) \parallel y_n - z \parallel^2 \\ &- \alpha_n \left(1 - \alpha_n\right) \parallel x_n - T y_n \parallel^2 \,. \end{split}$$

From (16) we have

$$||x_{n+1} - z||^{2} \le a_{n} ||x_{n} - z||^{2} + (1 - a_{n}) ||x_{n} - z||^{2} + (1 - a_{n}) (1 - \beta_{n}) (\beta_{n} - k) ||x_{n} - Sx_{n}||^{2} - a_{n} (1 - a_{n}) ||x_{n} - Ty_{n}||^{2}$$

$$\le ||x_{n} - z||^{2} - (1 - a_{n}) (1 - \beta_{n}) (\beta_{n} - k) ||x_{n} - Sx_{n}||^{2} - a_{n} (1 - a_{n}) ||x_{n} - Ty_{n}||^{2}$$

$$(17)$$

So,
$$\alpha_n (1 - \alpha_n) || x_n - Ty_n ||^2 \le || x_n - z ||^2 - || x_{n+1} - z ||^2$$

Since $0 < a < a_{...} < b < 1$ we have

$$a(1-b) || x_n - Ty_n ||^2 \le \alpha_n (1-\alpha_n) || x_n - Ty_n ||^2$$

 $\le || x_n - z ||^2 - || x_{n+1} - z ||^2 \to 0 \text{ as } n \to \infty.$

Therefore, $\lim_{n\to\infty} ||x_n - Ty_n|| = 0$. Now we show that $\lim_{n\to\infty} ||x_n - Sx_n|| = 0$.

From (17) we have

$$\begin{split} & ||x_{n+1} - z||^2 \leq ||x_n - z||^2 - (1 - a_n)(1 - \beta_n)(\beta_n - k)||x_n - Sx_n||^2 \\ & - \alpha_n (1 - \alpha_n)||x_n - Ty_n||^2 \\ & \leq ||x_n - z||^2 - (1 - a_n)(1 - \beta_n)(\beta_n - k)||x_n - Sx_n||^2 \ . \end{split}$$

So, $(1-\alpha_n)(1-\beta_n)(\beta_n-k)\|x_n-Sx_n\|^2 \le \|x_n-z\|^2 - \|x_{n+1}-z\|^2$ Since $0 < a < a_n < b < 1$ and $0 \le k < c < \beta_n < d < 1$ we have

$$(1-b)(1-d)(c-k) || x_n - Sx_n ||^2$$

$$\leq (1-a_n)(1-\beta_n)(\beta_n - k) || x_n - Sx_n ||^2$$

$$\leq || x_n - z ||^2 - || x_{n+1} - z ||^2 \to 0 \text{ as } n \to \infty.$$

Therefore, $\lim_{n\to\infty} ||x_n - Sx_n|| = 0$

3.1.1.5 Step 5

We prove that $w \in F(S) \cap F(T)$ Since $\{x_n\}$ is bounded, $\{u_n\}$ is also bounded. Then there exists a subsequence $\{u_{ni}\}$ of $\{u_n\}$ such that $u_{n_i} \xrightarrow{w} w$ for some $w \in H$. Further, replacing n by n_i in (13), we have

$$\begin{split} &\frac{1}{n_{i}} ||x_{n_{i}+1} - Ty||^{2} \leq ||x_{n_{i}} - Ty||^{2} ||Ty - y||^{2} + 2\left\langle u_{n_{i}} - Ty, Ty - y\right\rangle \\ &+ \frac{1}{n_{i}} \sum_{k=1}^{n_{i}} ||Sx_{k} - x_{k}||^{2} + \frac{2}{n_{i}} \sum_{k=1}^{n_{i}} ||Sx_{k} - x_{k}|| ||x_{k} - y|| \\ &+ \frac{2}{n_{i}} \sum_{k=1}^{n_{i}} ||Sx_{k} - x_{k}|| ||y - Ty|| + \frac{2}{n_{i}} \sum_{k=1}^{n_{i}} ||x_{k} - Ty_{k}|| ||y - Ty|| \end{split}$$

From Step 4 we have $\lim_{n\to\infty} ||x_n - Sx_n|| = 0$ and $\lim_{n\to\infty} ||x_n - Ty_n|| = 0$ it yeilds that when, $i\to\infty$ we have

$$\begin{split} &\frac{1}{n_{i}} \sum_{k=1}^{n_{i}} \| Sx_{k} - x_{k} \|^{2} \to 0, \\ &\frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \| Ty_{k} - x_{k} \| \| y - Ty \| \to 0, \\ &\frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \| Sx_{k} - x_{k} \| \| y - Ty \| \to 0, \\ &\frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \| x_{k} - Sx_{k} \| \| x_{k} - y \| \to 0. \end{split}$$

Also we have, $\lim_{i\to\infty}\frac{1}{n_i}\|x_{i+1}-Ty\|^2=0$ and $\lim_{i\to\infty}\frac{1}{n_i}\|x_1-Ty\|^2=0$. Therefore, since u_{ni} w as $i\to\infty$, from (18) we have

$$0 \le ||Ty - y||^2 + 2(w - Ty, Ty - y).$$

Puttingn y = w, then

$$0 \le ||Tw - w||^2 + 2(w - Tw, Tw - w).$$

So, we have

$$0 \le || Tw - w ||^2$$

It yields that ||Tw - w|| = 0 and Tw - w. So $w \in F(T)$. (19)

And by replacing n by n_i in (14), we have

$$\begin{split} &\frac{1}{n_{i}} \|x_{n_{i}+1} - Sy\|^{2} \leq \frac{1}{n_{i}} \|x_{1} - Sy\|^{2} + \frac{1}{n_{i}} \sum_{k=1}^{n_{i}} \|x_{k} - Sx_{k}\|^{2} \\ &+ \frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \|Ty_{k} - x_{k}\| \|x_{k} - Sx_{k}\| \\ &+ \frac{\left(1 + k\right)}{n_{i}} \sum_{k=1}^{n_{i}} \|Sy - y\|^{2} + 2 \left\langle u_{n_{i}} - Sy, Sy - y \right\rangle \\ &+ \frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \|x_{k} - Sx_{k}\| \|y - Sy\| + \frac{1}{n_{i}} \sum_{k=1}^{n_{i}} \|x_{k} - Sx_{k}\|^{2} \\ &+ \frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \|x_{k} - Sx_{k}\| \|Sy - y\| \\ &+ \frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \|Ty_{k} - x_{k}\| \|Sx_{k} - Sy\| \\ &+ \frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \|Ty_{k} - x_{k}\| \|Sx_{k} - Sy\|. \end{split}$$

Also From step 2 when $i \rightarrow \infty$, we have

$$\begin{split} &\frac{1}{n_{i}} \sum_{k=1}^{n_{i}}, \parallel x_{k} - Sx_{k} \parallel^{2} \rightarrow, 0, \\ &\frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \parallel Ty_{k} - x_{k} \parallel \parallel x_{k} - Sx_{k} \parallel \rightarrow 0, \\ &\frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \parallel x_{k} - Sx_{k} \parallel \parallel y - Sy \parallel \rightarrow 0, \\ &\frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \parallel Ty_{k} - x_{k} \parallel \parallel Sx_{k} - Sy \parallel \rightarrow 0, \\ &\frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \parallel Ty_{k} - x_{k} \parallel \parallel Sx_{k} - Sy \parallel \rightarrow 0, \\ &\frac{2}{n_{i}} \sum_{k=1}^{n_{i}} \parallel x_{k} - Sx_{k} \parallel \parallel Sx_{k} - Sy \parallel \rightarrow 0. \end{split}$$

Also we have,
$$\lim_{i\to\infty} \frac{1}{n_i} ||x_{i+1} - Sy||^2 = 0$$
 and $\lim_{i\to\infty} \frac{1}{n_i} ||x_1 - Sy||^2 = 0$. Therefore, since $u_{n_i} \xrightarrow{w} w$ as

 $i \rightarrow \infty$ we have

$$0 \le (k+1) || Sy - y ||^2 + 2\langle w - Sy, Sy - y \rangle.$$

Puttingn y = w, so

$$0 \le (k+1) || Sw - w ||^2 + 2\langle w - Sw, Sw - w \rangle.$$

Therefore, we have

$$0 \le ((k+1)-2) || Sw - w ||^2$$
.

Since k + 1 < 2. It yields that ||Sw - w|| = 0 and Sw - w, so $w \in F(S)$.

Therefore, by (19) and (20), $w \in F(S) \cap F(T)$.

3.1.1.6 Step 6

We show that $\{u_n\}$ converges weakly to $u \in F(T) \cap F(S)$ and $u = \lim_{n \to \infty} Px_n$. Since $F(T) \cap F(S) \neq \emptyset$, from step 1, we have $||x_{n+1} - z|| \le ||x_n - z||$ for all $z \in F(T) \cap F(S)$. So from Lemma 2.2, $\lim_{n \to \infty} Px_n$ exists. Put $u = \lim_{n \to \infty} Px_n$, Then we prove $u_n \to u$. Suppose that $\{u_{ni}\}$ be a subsequence of $\{u_n\}$ such that $u_{ni} \stackrel{w}{\to} w$. From step 5 $w \in F(T) \cap F(S)$. Now we show w = u. Since, $w \in F(T) \cap F(S)$ and by (6), we have

$$\begin{split} \left\langle x_k - Px_k w - u \right\rangle &= \left\langle x_k - Px_k, w - Px_k \right\rangle + \left\langle x_k - Px_k, Px_k - u \right\rangle \\ &\leq \left\langle x_k - Px_k, Px_k - u \right\rangle \\ &\leq ||Px_k - u|| ||x_k - Px_k|| \\ &\leq ||Px_k - u|| M, \end{split}$$

for all $k \in \mathbb{N}$, where $M = \sup\{||x_k - Px_k||: k \in \mathbb{N}$. Summing these inequalities from k = 1 to n, and dividing by n, we have

$$\langle u_{n_i} - \frac{1}{n_i} \sum_{k=1}^{n_i} Px_k, w - u \rangle \le \frac{1}{n_i} \sum_{k=1}^{n_i} M \| Px_k - u \|.$$

Since $\lim_{n\to\infty} u_{nn} = w$ and $\lim_{n\to\infty} Px_n = u$, obtain $\langle w - u, w - u \rangle \le 0$, so u = w.

3.2 Theorem

Let *C* be a nonempty closed convex subset of a real Hilbert space *H*, and *T* be a nonspreading mapping of *C* into itself. Suppose that $z \in C$ and define sequences $\{x_n\}$, $\{y_n\}$ and $\{S_n\}$ as follows: $x_1 = x \in C$ and

$$\begin{cases} x_{n+1} = \alpha_n z + (1 - \alpha_n) y_n, \\ y_n = \beta_n T x_n - (1 - \beta_n) S_n, \\ S_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k x_n \end{cases}$$

for all $n \in \mathbb{N}$, where $0 \le a_n \le 1$, $0 \le \beta_n \le 1$, $a_n \to 0$, $\sum_{n=1}^{\infty} \beta_n < \infty$ and $\sum_{n=1}^{\infty} a_n = \infty$. If $F(T) \ne \emptyset$, then $\{x_n\}$ and $\{S_n\}$ converge strongly to Pz, where P is the metric projection of H onto F(T).

3.2.1 **Proof**

Since $F(T) \neq \emptyset$, T is quasi-nonexpansive. So, for all $u \in F(T)$ and $n \in \mathbb{N}$

$$||S_{n} - u|| = ||\frac{1}{n} \sum_{k=0}^{n-1} T^{k} x_{n} - u||$$

$$\leq \frac{1}{n} \sum_{k=0}^{n-1} ||T^{k} x_{n} - u||$$

$$\leq \frac{1}{n} \sum_{k=0}^{n-1} ||x_{n} - u|| = ||x_{n} - u||.$$
(21)

Therefore,

$$\begin{split} || x_{n+1} - u || &= || a_n z + (1 - a_n) y_n - u || \\ &\leq a_n || z - u || + (1 - a_n) || y_n - u || \\ &\leq a_n || z - u || + (1 - a_n) || \beta_n T x_n \\ &+ (1 - \beta_n) S_n - u || \\ &\leq a_n || z - u || + \beta_n (1 - a_n) || T x_n - u || \\ &+ (1 - a_n) (1 - \beta_n) || S_n - u || \\ &\leq a_n || z - u || + \beta_n (1 - a_n) || x_n - u || \\ &+ (1 - a_n) (1 - \beta_n) || x_n - u || \\ &= a_n || z - u || + (1 - a_n) || x_n - u || \end{split}$$

Putting $K = \max\{||z - u||, ||x_1 - u||, \text{ we have that } ||x_n - u|| \le K \text{ for all } n \in \mathbb{N}. \text{ In fact, it is obvious that } ||x_1 - u|| \le K.$ Suppose that $||x_1 - u|| \le K$ for some $k \in \mathbb{N}$. Then we have

$$||x_{k+1} - u|| \le a_k ||z - u|| + (1 - a_k) ||x_k - u|| \le a_k K + (1 - a_k) K.$$

By induction, we obtain that $||x_n - u|| \le K$ for all $n \in \mathbb{N}$. So, $\{x_n\}$, $\{y_n\}$ and $\{S_n\}$ are bounded.

Since $||T^n x_n - u|| \le ||x_n - u||$, the sequence $\{T^n x_n\}$ is bounded.

Let $n \in \mathbb{N}$ Since *T* is nonspreading, we have from (2) and for $a \in C$ and k = 0, 1, 2, ..., n - 1

$$\begin{split} ||\,T^{k+1}x_n - Ta\,||^2 &\leq ||\,T^kx_n - a\,||^2 + 2\Big\langle T^kx_n - T^{k+1}x_n, a - Ta\Big\rangle. \\ &= ||\,T^kx_n - Ta + Ta - a\,||^2 \\ &\quad + 2\Big\langle T^kx_n - T^{k+1}x_n, a - Ta\Big\rangle \\ &= ||\,T^kx_n - Ta\,||^2 + ||\,Ta - a\,||^2 \\ &\quad + 2\Big\langle T^kx_n - T^a, Ta - a\Big\rangle \\ &\quad + 2\Big\langle T^kx_n - T^{k+1}x_n, a - Ta\Big\rangle. \end{split}$$

Summing these inequalities from k = 0 to n - 1 and dividing by n, we have

$$\begin{split} \frac{1}{n} & || T^n x_n - Ta \, ||^2 \leq \frac{1}{n} || \, x_n - Ta \, ||^2 + || \, Ta - a \, ||^2 \\ & + 2 \langle S_n - Ta, Ta - a \rangle \\ & + \frac{2}{n} \langle x_n - T^n x_n, a - Ta \rangle. \end{split}$$

Since $\{S_n\}$ is bounded, there exists a subsequence $\{S_{n_i}\}$ of $\{S_n\}$ such that $\{S_{n_i}\}$ $w \in C$. Replacing n by n_i , we have

$$\begin{split} \frac{1}{n_{i}} & || T^{n_{i}} x_{n_{i}} - Ta \, ||^{2} \leq \frac{1}{n_{i}} || \, x_{n_{i}} - Ta \, ||^{2} + || \, Ta - a \, ||^{2} \\ & + 2 \langle S_{n_{i}} - Ta, Ta - a \rangle \\ & + \frac{2}{n_{i}} \langle x_{n_{i}} - T^{n_{i}} x_{n_{i}}, a - Ta \rangle. \end{split}$$

Since $\{x_n\}$ and $\{T^n x_n\}$ are bounded, we have $0 \le ||Ta - a||^2 + 2(w - Ta, Ta - a)$ as $i \to \infty$.

Put a = w. Then we have

$$0 \le || Tw - w ||^2 + 2 (w - Tw, Tw - w) = - || Tw - w ||^2$$

So, $w \in F(T)$. Since

$$\begin{split} || x_{n+1} - S_n || &= || a_n z + (1 - a_n) y_n - S_n || \\ &= || a_n (z - S_n) + (1 - a_n) (y_n - S_n) || \\ &\leq a_n || z - S_n || + (1 - a_n) || y_n - S_n || \\ &\leq a_n || z - S_n || + (1 - a_n) || \beta_n T x_n + (1 - \beta_n) S_n - S_n || \\ &\leq a_n || z - S_n || + (1 - a_n) || \beta_n || T x_n - S_n || \\ &+ (1 - a_n) (1 - \beta_n) || S_n - S_n ||. \end{split}$$

Since $\{S_n\}$ is bounded and $a_n \to 0$, $\beta_n \to 0$, we have

$$\lim_{n \to \infty} ||x_{n+1} - S_n|| = 0$$
 (22)

Now, we show that $\limsup_{n\to\infty} \langle z - Pz, x_{n+1} - Pz \rangle \le 0$. We assume that there exists a subsequence $\{x_{ni+1}\}$ of $\{x_{n+1}\}$ such that

$$\limsup_{n\to\infty} \left\langle z - Pz, \, x_{n+1} - Pz \right\rangle = \lim_{i\to\infty} \left\langle z - Pz, \, x_{n_i+1} - Pz \right\rangle,$$

and $x_{n_i+1} \xrightarrow{w} t$. From (22), $S_{n_i} \xrightarrow{w} t$. So from the above argument, we have $t \in F(T)$. Since P is the metric projection of H onto F(T) and from (6) we have,

$$\lim_{t\to\infty} \langle z - Pz, x_{n_t+1} - Pz \rangle = \langle z - Pz, t - Pz \rangle \le 0.$$

This implies

$$\lim_{n\to\infty} \langle z - Pz, x_{n+1} - Pz \rangle \le 0. \tag{23}$$

Since $x_{n+1} - Pz = a_n z + (1 - a_n) y_n - Pz$, and $a_n, \beta_n \in (0,1)$ and From (4), (21) we have,

$$\begin{split} || \ x_{n+1} - Pz \ ||^2 &= a_n z + (1-a_n) y_n - Pz \ ||^2 \\ &= || \ a_n (z - Pz) + (1-a_n) (y_n - Pz) \ ||^2 \\ &\leq (1-a_n)^2 \ || \ y_n - Pz \ ||^2 + 2 a_n \Big\langle z - Pz, x_{n+1} - Pz \Big\rangle \\ &= (1-a_n)^2 \ || \ \beta_n Tx_n + (1-\beta_n) S_n - Pz \ ||^2 \\ &+ 2 a_n \Big\langle z - Pz, x_{n+1} - Pz \Big\rangle. \\ &\leq (1-a_n)^2 \ \beta_n \ || \ Tx_n - Pz \ ||^2 \\ &+ (1-a_n) (1-\beta_n) \ || \ S_n - Pz \ ||^2 \\ &+ 2 a_n \Big\langle z - Pz, x_{n+1} - Pz \Big\rangle \\ &\leq \beta_n \ || \ x_n - Pz \ ||^2 + (1-a_n) \ || \ x_n - Pz \ ||^2 \\ &+ 2 a_n \Big\langle z - Pz, x_{n+1} - Pz \Big\rangle. \end{split}$$

Put $\theta_{n} = \beta_{n} ||x_{n} - Pz||^{2}$, $s_{n} = ||x_{n} - Pz||^{2}$ and $\gamma_{n} = 2 \langle z - Pz, x_{n+1} - Pz \rangle$ in Lemma (2.1). From (23) and $\sum_{k=0}^{\infty} \alpha_{n} = \infty$, we have $\lim_{n \to \infty} ||x_{n} - Pz|| = 0$, and from (22) $\lim_{n \to \infty} ||x_{n} - S_{n}|| = 0$. Therefore, $\lim_{n \to \infty} S_{n} = Pz$.

3.3 Remark

Theorem 3.2 improves Theorem 1.3 by Kurokawa and Takahashi in the following sense.

It is sufficient to put $\beta_n = 0$ in Theorem 3.2.

4. References

- Aoyama K, Kimura Y, Takahashi W, Todoya M. Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Analysis. 2007; 67(8):2350–60.
- Baillon J-B. Un theoreme de type ergodique pour les dans contractions non linears un espace de Hilbert C R. Acad Sci Paris Ser. A-B. 1975; 280:1511–4.
- 3. Halpern B. Fixed points of nonexpanding maps. Bull Amer Math Soc. 1967; 73(6):957–61

- 4. Hojo M, Takahashi W, Termwuttiopong I. Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces. Nonlinear Analysis. 2012; 75(4):2166-76.
- 5. Iemoto S, Takahashi W. Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space. Nonlinear Analysis. 2009; 71(12):2082-9.
- 6. Itoh S, Takahashi W. The common fixed point theory of single-valued mappings and multi-valued mappings. Pasific J Math. 1978; 79(2):493-508.
- 7. Ishikawa S. Fixed points by a new iteration. Proceedings of the American Mathematical Society. 1974; 44:147-150. Available from: http://dx.doi.org/10.1090/S0002-9939-1974-0336469-5
- 8. Kohasaka F, Takahashi W. Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces. Siam J Optim. 2008; 19:824-35.

- 9. Kurokawa Y, Takahashi W. Weak and strong convergence theorems for nonspreading mappings in Hilbert spaces. Nonlinear Analysis. 2010; 73(6):1562-8.
- 10. Mann WR. Mean valued methods in iteration. Proceedings of the AmerIcan Mathematical Society. 1953; 4:506-10.
- 11. Osilike MO, Isiogugu FO. Weak and strong convergence theorems for nonspreading-type mappings in Hilbert spaces. Nonlinear Analysis. 2011; 74(5):1814-22.
- 12. Takahashi W. Nonlinear functional analysis. Yokohama: Yokohama Publishers; 2009.
- 13. Takahashi W, Todoya M. Weak convergence theorems for nonexpansive mappings and monoton mappings. J Optim Teorry Appl. 2003; 118(2):417-28.
- 14. Takahashi W. Introduction to nonlinear and convex Analysis. Yokohama: Yokohama Publishers; 2009.