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Abstract

In this paper first we give a weak convergence ergodic theorem for K-strictly pseudo-nonspreading and nonspreading
mapping in Ishikawa iteration scheme, motivated by Kurokawa and Takahashi in°. Then we deal with a strong convergence
theorem for nonspreading mappings in a Hilbert space. Our results improve and extend Kurokawa and Takahashi result.
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1. Introduction

Let H be areal Hilbert space and C be a nonempty closed
convex subset of H. A mapping T:C— C is said to be
nonexpansive if || Tx — Ty ||<|| x — y || for all x, y € C.
The set of fixed points of T'is denoted by F(T). A mapping
T:C— Cwith F(T) # ¢ is called quasi-nonexpansive if

lx-Tyll<[lx—xll

forallx e F(T) andy e C. It is well known that the set of
fixed points of a quasi-nonexpansive mapping T is closed
and convex, see®. Recently, Kohosaka and Takahashi®
introduced the following nonlinear mapping: Let E be a
smooth, strictly convex and reflexive Banach space, let
J be the duality mapping of E and let C be a nonempty
closed convex subset of E. Then, a mapping T:C—C is
said to be nonspreading if

O(Tx, Ty) + ¢(Ty, Tx) < ¢(Tx, y)+ ¢(Ty, x)

forallx, ye C, where ¢ (y, x) = || x ||*-2(x, Jy) + || y ||? for
all x, y € E. They considered such mapping to study the
resolvents of a maximal monotone operator in the Banach
space. In the case when E is a Hilbert space, we know that
o (x, ¥) =|| x-y ||* for all x, y € E. So, a nonspreading map-
ping T: C— Cin a Hilbert space H is defined as follows:

2| Tx -y [P< || Tx -y |P+ || Ty - x| (1)

*Author for correspondence

It is shown in’ that (1) is equivalent to
| Tx - Ty |P< || x -y |P+2<x-Tx, y - Ty>, (2)

for alll x, y € C. Observe that if T is nonspreading and
F(T) # f, then T is quasi-nonexpansive.

A mapping T:C— C is said to be k-strictly pseudo-
nonspreading if there exsists k € [0, 1] such that

| Tx - Ty |P<||x-y|P+2<x-Tx, y - Ty>
thllx-(-D P (3)

for all x, y € C. Clearly, every nonspreading mapping is
k-strictly pseudo-nonspreading.

The following example shows that the class of k-strictly
pseudo-nonspreading mapping is more general than the
class of nonspreading mapping.

1.1 Example

(See'’). Let R denote the real numbers with the usual
norm. Let T: R — R be defined for each x e R by

X
Tx = {
—-2x

Then, T is k-strictly pseudo-nonspreading but not non-

lf X e (_°°> 0))
if x €[0, o).

spreading mapping.
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1.2 Lemma

(See'’). Let C be a nonempty closed convex subset of real
Hilbert space H, and T:C— C be a k-strictly pseudo-non-
spreading mapping. If F(S) # ¢, then it is closed and convex.

Some iteration processes are often used to approxi-
mate a fixed point of a nonexpansive mapping. The first
iteration processes is known as Halpern iteration process.
The following strong convergence theorem of Halpern’s
type was proved by Wittmann: for any x, = x € C, define a
sequence {x } by

x, =0 x+(1-o)Tx neNuU/{0}

n=0
20 Y, Ox=oand 3 Ja,—a| <o Then {x}
converges strongly to a fixed point of T.

The second iteration process is introduced by Mann'.

for all n € N, where the sequence {a,,} is in [0,1], o

We also know the following weak convergence theorem
of Mann’ type: for any x = x €C, define a sequence

{x,} by

x =0 x +(1-0o)Tx neNuU{0}

for all n € N, where the sequence {a,} , isin [0,1] and

e
ano |an —-a, +1| <eo, Then {x } converges weakly to a
fixed point of T.

The third iteration process” is defined recursively by

{ Vo= Bx,+ (1= F)Tx,

X, =a,x, +(1+a)Ty,,

where the initial guess x is taken in C arbitrarily and the
and {,b’,,}nzl are in [0,1].

We know the following first nonlinear ergodic theo-
rem in a Hilbert space from Baillon*

n=1

sequences {an }

1.3 Theorem

Let C be a nonempty bounded closed convex subset
of H and let T:C— C be nonexpansive. Then for any x

-1
€C Sx =lzn T* x converges weakly to an element
n k=0

zeF(T).

Kurokawa and Takahashi in proved the following
weak convergence nonlinear ergodic theorem of Baillon’s
type for nonspreading mappings in a Hilbert space. They
used Halpern’s iteration scheme.
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1.4 Theorem

(See?). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T be a nonspreading mapping from
C into itself. Define two sequences {x } and {z } in C as
follows: x, = x € C and

X, =ax,+(1-a)Tx,,
1 n
f=13
k=1

for all n € N, where . -0 and 0 < o < 1. If F(T) # ¢,
then {z } converges weakly to z € F(T), where z=lim__
Px_and P is the metric projection of H onto F(T).

In particular, for any x € C, define

0

1 n—1 %
S"x_;zngo and T* x

Then{S x} converges weakly to ze F(T), where z=lim
PT"x.

The following theorem, is the strong convergence the-
orem for nonspeading mappings in a Hilbert space that
Kurokawa and Takahashi proved.

1.5 Theorem

(See). Let C be a nonempty closed convex subset of a real
Hilbert space H. Let T be a nonspreading mapping from
C into itself. Let ue C and define two sequences {x } and
{z,} in Cas follows: x, = xe C and

X, = anu+(1—an)zn,
—1
I
z, ZZZ T"x,,
k=0

forallne N,where,0<o <1,0, —0and anl an= 00,
If F(T) # ¢, then {x } and {z } converge strongly to Pu,
where P is the metric projection of H onto F(T).

Recently Kurokawa and Takahashi in® obtained a
weak mean convergence ergodic theorem of Baillon’s type
for nonspreading mappings in a Hilbert space. They used
Halpern’s iteration scheme for proving their theorem. In
this paper motivated by them, first we give a nonlinear
ergodic theorem for k-strictly peseudo-nonspreading
and nonspreading mapping in Ishikawa iteration scheme.
Then we deal with a strong convergence theorem for
nonspreading mappings in a Hilbert space. These two
theorems improve and generalize Kurokawa-Takahashi
theorems.
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2. Preliminaries

Let H be a real Hilbert space with inner product (.,.) and
norm ||.||, respectively. In a Hilbert space H, it is known
that

D tx + Q=0 y |P=t |l x P+ A-0) [[ y [P~ ¢
(1-0) || x-y P (4)
forall x, ye H and for all € [0,1] see.

i) || x+y|P<||x|P+2x+y) Vx,ye H (5)

i [y IP-1lxlP<2(-xy  Yxye H
See'.

Let {x } be a sequence in H and xe H. Weak conver-
genceof {x }isdenoted by x, W X and strong convergence
by x —x. Let H be a nonempty closed convex subset of a
real Hilbert space H. The nearest point projection of H
onto C is denoted by P, thatis, forallxe Hand Ye C

| x-P x|l <[[x-y]l
Such P_is called the metric projection of H onto C. It
is known that for each xe H
<x—PCx,y—PCx>SO VyeC. (6)

See!? for more details.

2.1 Lemma

See'. Let {S } be a sequence of non-negative real numbers
satisfying the condition

S, <(1-a)S +o y+6,

n+l =
where {0 }, {0} and {y } are real sequences such that:
i) o < [0,1] and zk:O a, = oo,
ii) limsup y <0,
iii) 6 >0 for alln € N and Zk=0 Oh < oo,

Then, lim s =0.
n—> oo n

2.2 Lemma'

See®. Let C be a nonempty closed convex subset of a real
Hilbert space H. Let P be the metric projection of H onto
Candlet {x } beasequencein H. If || x  -q||<||x -q]l,
forallge Candne N, then {Px } converges strongly.

3. Main Results

3.1 Theorem

Let H be a Hilbert space, and let C be a nonempty closed
and convex subset of H. Let T:C— C be a nonspreading
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mapping with F(T) # ¢ and S: C— Cbe a k-strictly peseu-
do-nonspreading mapping with F(S) # ¢, such that F(T)
N F (S) # ¢. Suppose that {x }, {y } and {u } are sequences
generated by x, = xe Cand

xn+1 = anxn +(1_an)Tyn’

y, = f.x, +(1—ﬁn)8xn,
1 n
»un _;; Xk

for all n € N, where {a } and {3 } are sequences of (0,1)
and 0<a<a <b<1,0<k<c<f <d<1forsomea, b,
¢, d > 0. Then {u } converges weakly to ue F (T) N F (S),
where u =1lim _ _ Px and P is the metric projection of H
onto F(T) N F (S).

3.1.1 Proof
We divide the proof into 6 steps.

3.1.1.1 Step 1

We first show thatif ze F(T) N F(S),thenlim _ _Ilx -z||
exists and {x } is bounded. Since F(T) N F(S) # ¢ and T'is
nonspreading, T is quasi nonexpansive, then we have

1% -2ll=1la,x,+0-a) Ty -z

nil
<a,llx,-z|l+A-a)| Ty,-z|
<allx, -zll+] A-a) |l y, 2l (7)
Putting V = I+(1-)S, from (4) and Sasak-strictly
peseudo-nonspreading mapping. For all x, y € C we have
IV, x=V,yIP= 114, (x=y)+(1-4,)(Sx=sy)IF
=4, 1x=yIF +(1=4,)lI(Sx=sy)IF
=4, (1= 4 )l x=8x=(y=y)II
<A Nx=yIP +(1=4,)lx =y +2x—Sx,y-Sp)
kel x=Sx=(y=5y)IF)
=4, (1= £ )l x=8x=(y=y)IF
=[lx=y|F +2(1=4, )(x=Sx.y=Sy)=(1-4,)(4, ~k)
ll=Sx=(y=Sy)IF < llx=p P +2(1= 4 ){x = Sx, 7= Sp)

=[|x-y|P + x=V,%,y=V,y. (8)

2
1=/,
Since Vz =8 z+ (1 - B) Sz, then from (8) we have
Y, -zl[=IV,x-zl[=][V,x-V z[[<]|lx,- 2], ()

therefore, by (7) and (9)
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lx,., -zll<a,llx, -zl + A-a)|lx,-z[[ =[x~ 2]l

n+l
So, it yeilds thatlim _ || x - z|| existand hence {x },
{Sx } {y } and {Ty } is bounded.

3.1.1.2 Step 2
We claim that

1
;me =Ty IP<llx, —TyIF +I Ty — y IF +2(u, =Ty, Ty — y)

1 n , 2 n
= ISk X P S Sx—x Il lx -
n =1 n k=1

2 n
= D ISk =y =Ty

2 n
= D =Ty =Ty

From (4), (2) and since 0 <a, <1 we have forallye C
and ke N,
ll Xy =Ty IP=ll o, + (=0t ) Ty, =Ty |
=Il ot (3, = Ty)+ (1 —0, )(Ty, —Ty) I
=0y % =Ty P +1—a ) | Ty, =Ty IP — oy, (1—ot)
e =Ty IP <o [l =Ty IP +1—ou) | Ty, =Ty P
<oy Nl x =Ty 1P +A=0)lll y =y IF +2(y; =Ty, y =Ty

Since

Iy =y IP=ll fox + (A= £)Sx, =y I
<SS lx =y IP A=) 11Sx, =y I,
so, we have
| X —Ty IP< 0y Nl 2 =Ty IP +A—0) G, 1l x, = y I
+1—o) 1= £ N Sx, =y IP
+2(1— oy Xy, =Ty y =Ty)
=0y llx =Ty P +A-a ) Nl x =y I
+(1—o ) A=) N Sx =%, +x, =y I
+2(1— oy Xyx =Ty y = Ty)
<oy || x —Ty P +A—0 )4 1% —y I
+ (=04 ) (1= £) 11 Sx, =, |
+1-0) A=) 1 x, =y I
+2(1—0t, ) A= FSx, — x5 %, — )
+2(1— oy Xy, =Ty y = Ty)
<oy llx =Ty P +1—o) | x, — y I
+(1= 0 ) (1= ) 1%, = I
+2(1—0, YA = F)Sx, — x5 %, — ¥)
+2(1— oy Xy, — Ty, y = Ty). (10)
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But, we have

lx, =y IP=llx —Ty+Ty—yIP
=llx, =Ty P + 11 Ty =y I +2(x, =Ty, Ty—y). (11)

So, from (10) and (11)

%y =Ty IP< 0y 1l =Ty |P
+1—o) |l x, —Ty P
+(1—o) I Ty-yIP
+2(0 -0y Xx, =Ty, Ty — y)
+(1—0y ) (1= S| Sx, — %, I
+2(1— 0t ) A= A )SX, =X, X — ¥)
+20—0 Xy, =Ty y—Ty). (12)

But we have

Dk =Dy y =Ty = =%y = Ty)
X =Ty y=Ty)
= fx + (1= £)Sx — %, y = Ty)
X =Ty y=Ty)
= flx =%y =Ty)
+(A = Sx, —x, y=Ty)
X =Ty y=Ty)

Thus, by (12)

| X —Ty IP< oy Il x =Ty |
+(1=oy )l =Ty I + (1= o )1 Ty = yIF
+2(1—0Lk)(xk -Ty,Ty—y)
+(1=0u ) (1= £ ) Il Sx = x, 1P
+2(l—otk)(1—ﬂk)(3xk — X X = ))
+2(l—0tk)[(l—,b;<)(8xk =X, y=Ty)+{x, —Tyk,y—Ty)].
Therefore

| % =Ty Pl x, =Ty IP + (1= )| Ty =y IP
+2(1—0ck)(xk ~Ty,y—=Ty)
+18x, —x, " +2(Sx, —x,, %, — ¥)
+2(Sx, —x,, y=Ty)
+2(x, =Ty, Ty - y).
Summing these inequalities from k=1 to n and divid-

ing by n, Since {a } and {f } are sequences in (0,1), we

have
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1 s Igon 5 1 n 2
il _ <= — - _
. E o 1% =Dyl —nE =Tyl + E =l

2
DI

2 n 2 n
+; Zk:l<sxk — Xp» Xy, —y>+; Zk:I(Sxk - Xy =Ty)

1 n
x, =Ty, Ty—y)+ - 2k=1|| Sx, —x |I°

2 n
+ - Zk:1<xk =Ty, y=Ty).
So, we have

1
;le,m ~TylP<lix, =Ty I +1I Ty =y I

1 n
+2(u, —Ty,Ty—y)+; Zk:l I Sx; — x; I
2 n
= D IS =l =y
2 n
+= 3 1S5 =x ly =Tyl
2 n
= D =Ty =Ty (13)
3.1.1.3 Step 3
We prove that

1 2 1 2 1 @ ,
oSyl 1Sy (P4 2l =Sx

2 n
+ 2 D ITy=x e = S,

wz 1Sy =71

+2(u, =Sy, Sy —y)

2 n
+= D = sulllly=syl

1 n
D EA A
n k=1

2 n
+- D In=Sx sy =y

2 n
4= D Ty =5 1Sk =Sy

2 n
- >l =Sx i Sx =Syl
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We have forallye Candke N,

| Xy = Sy 1P =l oty + (10 ) Ty, = Sy I
<oy |l =Sy P+ (1= ) 1 Ty, =Sy I
= o 1 =Sy I +(1- o)

| Ty, —Sx, +Sx, =Sy |
<oy Nl x = Sy I +(1— o )1l Ty — Sxp I
+11Sx, = Sy Il +2(Ty, — Sx,Sx, — Sy)]
<oy llx =Sy 1P +(1-0)

1 Ty, — %, 1P +[x = Sx ||
+lx, — yIF +2¢x, —Sx,, y —Sy)
+k|lx, —Sx, —(y=Sy)IP
+2(Ty, — x,,Sx, — Sy)

+2{x;, — Sx;, Sx; — Sy)l.

But we have

llx, = yIP=llx, =Sy IF +1ISy—yIf
+2(x;, =Sy, Sy —y),

SO
"Tyk _’Ck"2
+||xk —Sxk"2 + Z(Tyk — X Xy — Sxk)
+(1—ock)[||xk =SyIP +11Sy =y I +2(x, —Sy,Sy—y>]
+2(1— 0o )(x, = Sx, y = Sy) + k(1= 04 ) | x, — S IF
+k(1=o )1y =Syl +2k(1— 0y ){x, = Sx, Sy — »)
(1 ock)<Tyk — X Sx, — Sy)
+2(1—o, ){x, —Sx,,Sx, —Sy).
Therefore

% =Sy IPS @ 12 =Sy IF +(1= @ )| Ty, —x; I
+(1=a )l x = Sxi IF
+2(1= a4 (Ty, — x5, —Sx,)
+(1=a )(1+k) ISy -y I
+2(1-a )(x, =Sy, Sy = y)
+2(1- ) (x —Sx0 y = Sy)
+k(1-a )|l x, —Sx; IF
+2k(1—ak
+2k(1 a,
+2(1-a,)

)(xk S,y =)
)(T)’k x> Sx; = Sy)
(x, —Sx;,Sx, —Sy)
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N =Sy I+ Ty = x P + 11 = S I
+ 2 Tyy — X2, = Sx )+ (L+ k) 1Sy = y I
+2x =Sy, Sy = y)
+2(x, —Sx;, y = Sy>+ |l x, —Sx, |IP
+2(x; —Sx;,Sy—y)
+ 2Ty, — xS, —Sy)
+2(x; — Sx;.,Sx, — Sy).

Summing these inequalities from k = 1 to n and divid-
ing by n, Since {a } and {B } are sequences in (0, 1), we
have

1 n 2 1 n 2
=2 1 =Sy P B i =Sy

1 n 2
I e

1 n , 2 "
+;Zk=1 [l = Sx |l +;2k21 (Ty, — x> %, — Sx;)

(l-l-k) n , 2 n
e D> lIsy=yll +;Zk:1<xk—8y,8y—y>
2 n S S 1 " s 5
O WIRCERISERIRE WP
2 n 2 n
+; Zk:1’<'xk _S‘xk’sy_y>+; 2k:1’<Tyk _xk’sxk _Sy>
2 n
+;zk:1,(xk —Sx,,Sx, — Sy).
So we have
1 2 1 2 1 n 2
—_ _ < _ - _
1% =Sy IS~ llx =Syl +nZk:1 I 2, = Sx, |l
2 n
2 D 1=l = Sx, |

+(1+k)

n 2
> ISy =yIF +2(U, -$7.8y - y)
2y S Syll+ 13" Sx, P
+= D = Sulllly =Syll+= 3 llx =Syl
2 n
+= D = su sy =yl
2 n
2 D =118 =Syl

2o
+2D e = SxlISx =Syl (14)
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3.1.1.4 Step 4

We claim that lim
|| =o0.
From (8) we have,

lx - Sx ||=0andlim __[[x - Ty,

IV, x=V,yIP<llx—y I +2(1- 4, )(x = Sx, y = Sy)
~(1=4) (4 = k)l x=Sx~(y=Sy)I
=llx =y I +2(1= £, ){x = Sx, y - Sy)
~(1=4)(8, - k)l x—Sx]|P
~(1=8) (B - k)l y=SyIF
=2(1=4,)(4, = k){x=Sx, y = Sy). (15)

Putting in (15) x = x_ and y = z so we have,

1V, x, —zIP<llx, —z | +2(1- £,){x, — Sx,,z = Sz)
-(1=-8)(8 - k)l x, —Sx, —(z—Sz)IF
—(1=£)(8, -K)lIsz-zI?
—2(1—ﬁ;)(ﬁj1 —k)(xn —-Sx,,z2—Sz).

Since ze F(S)NF(T),

Iy, —zIP=lV,x, —zI<llx, —z |
~(1=£)(4, —k)lIx, =Sx, I (16)
We have,

1%, =2 P =l 0, x, + (1=t ) Ty, =2 |F
<a, llx, —z|F +(1-a, ) Ty, —zIF
-, (1=, )l x, =Ty, I
<o, llx, —z I +(1-o, )l y, —2IF

—a, (1=, )l x, =Ty, IF .

From (16) we have

%, —2zIP<a,llx, -z
+(1-a,)llx, —zIF
-(1-a,)1-4,)(8, -kl x, - Sx, I
-a,(1-a,)llx,-Ty, I

dix, —zIF =(1-a,)(1-£)(8 - k)l x, —Sx, I
—a,(1-a,)llx, =Ty, I (17)

2 2 2
So,at, (1—=a, )l x, =Ty, IP<llx, =z | =l x,.., — 2|
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Since0<a<a, < b<1wehave

a(1-b)llx, —Ty, I’< o, (1-a, )l x, =Ty, I

Ax, —zIP =llx,,, —zIF—0asn— .

n+l

Therefore, lim _ _||x - Ty |[[=0
Now we show that lim _ _|[x -Sx || =0.
From (17) we have

%, —zIP<llx, —zIF =(1-a,)(1- £,)(8, - k)l x, = Sx, I
—a, (1-a, ) llx, =T, I
x, —z I ~(1-,) (1= £4) (4, = k)l x, = Sx, I -
So, (10, )(1=£,) (4, —k) I x, = Sx, IP <l x, =2 |F | x,,, — 2|

Since0<a<a <b<land0<k<c<pf <d<1 we
have

(1-b)(1-d)(c—k) Il x, —Sx, I
<(1-4,)(1=4)(4 k)l x, =Sx, I
Ax, —zIP =llx,,, —zIF—>0asn— e

Therefore, lim _ _|[|x -Sx ||=0

3.1.1.5 Step 5

We prove that w e F (S) N F (T)Since {x }is bounded, {u }
is also bounded. Then there exists a subsequence {u_} of

{u} such that u, 2w for some w e H. Further, replac-
ing n by n. in (13) we have

1
5 =Ty PS5, =Ty IP Ty =y 1P +2(u, =Ty, Ty - y)
1 n; S 2 2 " S
+’Ti qu [N | +n—izkzl Il Sx, —x, 11 1l x, — ¥ |
2 » <
+;2k=1 II'Sx; =, I ||)’—T)’||+;24k=1 I, =Ty I y=Tyll
| ’ (18)

From Step 4 we have lim _ _|[x - Sx || =0 and
lim __||x - Ty, || = 0 it yeilds that when, i — o= we have

1 n; 2

n—izkzl || Sx, —x, IP= 0,

2 n

n_,.zkzl I Ty = x, 1y =Ty =0,
2 n;

Ezk=1 1S = 1l y =Ty =0,

2 n
n—izkﬂ 116, = S, 11l %, = y 110,
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1
oo_”xi+1 _Tsz:O and limi—m
n

i n;

Also we have, lim,_,

l|x, = Ty|=0. Therefore, since u_w as i — oo, from (18)
we have
0| By-y|P+2(w-Ty, Ty-y).
Puttingn y = w, then
0L|| Tw-wl]*+ 2 (w-Tw, Tw - w).
So, we have
0| Tw-wl|?

It yields that || Tw - w || =0 and Tw - w. Sow € F(T). (19)

And by replacing n by n,in (14), we have
e EIRER =P PEDTRD W P

2 o
+; Zkzl 1Ty —xp 111 x5 = Sxic I
1+k "
+¥ 2k:l ||Sy—y||2 +2 <”ni -Sy,Sy—y)

2 n;
23
n k=1

2 n,
+ 2 Ik =Sx ISy =yl

1 n
[ERA IIy—Sy||+n—iZk:1||xk — S, |

2
+ =3 Ty = S5 =y |

2 n;
+n_1.2k:1 |13 = S 111 Sx, =Sy Il
Also From step 2 when i — oo , we have
L3 i = 5%, IP—,0
ni k=l, xk xk » Uy

2 n;
szzl" Ty =%, Il % = Sx, 1=0,

2 n;
n_,zk:l 1, = Sx Ml 11y =Sy Il 0,

2 n;
n—izkﬂ 1Ty, =, 1l Sx = Sy 1= 0,

2 n;
n—izkzl |12 = Sxi I 1l Sxi = Sy [l 0.
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1
Also we have, lim,__—|lx,, —Sy|[=0 and
.

1

1
lim, — || x, = Sy | =0. Therefore, since u, Sw as

1

i — oo we have
0<(k+ 1) [ Sy -yl +2{w-Sy,S-y.
Puttingn y = w, so
0<(k+1)|| Sw-wl|?+2(w-Sw, Sw - w).
Therefore, we have

0<((k+1)=-2) || Sw-w]]>

Since k + 1 < 2. Ityields that || Sw - w || = 0 and Sw — w,
sowe F(S). (20)

Therefore, by (19) and (20), w € F(S) N F(T).

3.1.1.6 Step 6

We show that {u } converges weakly to u € F(T) N F(S)
andu=lim ,_ Px .Since F(T) N F(S) # ¢, from step 1, we
have |[x - z||<||x, - 2|| forall ze F(T) N F(S). So from

Lemma 2.2, limﬁw Px _exists. Put u = limﬁw Px , Then
w

we prove u, —u . Suppose that {u } be a subsequence

of {u } such that u, =5 w. From step 5w e F(T) N E(S).
Now we show w = u. Since, w € F(T) N F(S) and by (6) ,
we have

<xk - Pxw — u>=<xk - ka,w—ka>+<xk — Px;, Px;, —u>
S<xk — Px, Px; —u >
<[ Py = u |l 2 =P ||
<[| Px —ul| M,

for all k € N, where M = sup{||x, - Px ||: k € N. Summing
these inequalities from k = 1 to 1, and dividing by 7, we have

1 n; 1 n,
- — < — —
<uni . E k_lka,w u>_ni E o M || Px, —u]l.

Sincelim,_ u =w andlim _ Px = u, obtain (w - u,
isoo i n>oco n
w-u)<0,s0u=w.

3.2 Theorem

Let Cbe a nonempty closed convex subset of a real Hilbert
space H, and T be a nonspreading mapping of C into itself.
Suppose thst ze Cand define sequences {x }, {y } and {S }
as follows: x, = x € Cand
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xn+1 = anz+(1_an)yn’
4yn zlgnTxn _(l_léit)Sn’

k=0
forall n e N, where 0 <a <1,0<f <1,a — 0,

> A< and D @ = If K(T) # ¢, then {x,}
and {S } converge strongly to Pz, where P is the metric
projection of H onto F(T).

3.2.1 Proof

Since F(T) # ¢, T is quasi-nonexpansive. So, for all u €
F(T)andne N

n—-1
I, ~u] =l = 3 75, —ull
"=

1 n—1 X
<=3 T, —ul]
n =0

1 n—-1
<= M, —ul=lx, vl
n = (21)

Therefore ,

%1 —ull=ll g2+ 1= a,)y, —ul
Sa,|lz=ull+A=a)lly, —ull
<a,l|z=ull+0=-a) | £Tx,
+(1=4)S, —ul|
<a, ||z —ull+ 4, A=a)||Tx, —ull
+ (1=a,)1=4)IIS, —ul|
<a|lz-ul|l+4,0A=a) x, —ull

+ 1-a)A-g)||x, —ull

=, ||z=ull+0-a)lx, —ul|

Putting K = max{||z - u||, ||x, - u||, we have that ||x -
u|| <K forall ne N.In fact, it is obvious that ||x, - u|| < K.
Suppose that ||x, - u|| < K for some k € N. Then we have

e —ullS g ||z —ull+ Q= aq) || x —ull
<SqK+(1-a)K.

By induction, we obtain that ||x, - u|| <K forallne
N. So, {x }, {y } and {S } are bounded.

Since || T"x, - u || < || x, - u ||, the sequence {T" x,} is
bounded.
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Let n e N Since T is nonspreading, we have from (2)
andforae Candk=0,1,2,..,n-1
| 7% x, —Ta|P <||T*x, —a|P +2<Tkxn —TM a—Ta>.

=||T*x, = Ta+Ta—alf

+ 2<Tkxn - Tk“xn, a— Tu>

=||T"x, = Ta|} +|| Ta-a]f
+2(1kx, -1, Ta - a)

+2<Tkxn - Tk+1xn, a-— Ta>.

Summing these inequalities from k = 0 to n -1 and
dividing by #, we have

1 1
—NT"x, -Ta|l<—||x, - Tal’ +|| Ta—all
n n

+2(S,—Ta,Ta—a)
2 n

+—(x, —T"x,,a—Ta).
n

Since {S } is bounded, there exists a subsequence {S }
of {S } such that {S } we C. Replacing n by n, we have

1 . 2 1 2 2
—IT"x, —Tal’<s—|lx, —Tall" +||Ta-all
n; ! n; !

+2(S, —Ta,Ta—a)

2
+—(x, -T"x, ,a—Ta).
n, " i
Since {x } and {T"x } are bounded, we have 0<|| Ta -
alf+2(w-Ta, Ta-a)asi— oco.
Put a = w. Then we have

0| Tw-w|P+2(w-Tw, Tw-w)=-|| Tw-w||?
So,we F (T). Since

1% =S, =Nl 4,2 + (A= a,)y, =S, |l
=lla,(z=S)+1=a,)(y, =S)I|
<4, |lz=S, [+ A=a)|ly, =S,
<a,|lz=S, I+ 0= a)[| 4 Tx, + 1= £4)S, =S, |
<, ||z =S, [+ A=a) || 41| Tx, =S, |l
+(1=a,) A=A, =S, I

Since {Sn} is bounded and a,— 0, ﬁn — 0, we have

lim x-S, |=0 (22)

n+l

Now, we show that limsup, ... <z Pz, x,,, — Pz> <0.
We assume that there exists a subsequence {x . }of {x }
such that
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limsup,, .., <z —Pz,x,., — Pz> =lim, ,, <z — Pz, Xp1~ Pz>,

and x,, =t From (22), S, »t. So from the above
argument, we have t € F(T). Since P is the metric
projection of H onto F(T) and from (6) we have,

lim;_,, <z —Pz,x, 4 — Pz> = <z — Pz, t - Pz> <0.

This implies
lim, .., <z —Pz,x,,, — Pz> <0. (23)
Sincex , -Pz=az+(1-a)y -Pzanda,p € (0,1)

and From (4), (21) we have,

-Pz|f=az+0-a)y, - Pz|}
=|la,(z - Pz)+ (1~ a,)(y, - P2)|*
<(1-a) |y, -PzI +2an<z—Pz, Xy —Pz>
= (- a)? || 45, + 0 45, - Pz|P
+2an<z - Pz, x,, —Pz>.
<(-a,) g, || Tx, - Pz|’
+ (=)A= A)IIS, - Pz|P
+2a, <z —Pz,x,,,— Pz>
<4 l1x, = Pz|f + (1= a,)]x, - Pz|P
+2an<z —Pz,x —Pz>.

” xn+1

n+1
Put® =p ||x -Pz|Js, =||x, - Pz||>andy =2(z- Pz
x ., — Pz) in Lemma (2.1). From (23) and Z:ZO a,=oo,

we havelim __ || x - Pz||=0,and from (22) lim __ || x -
S, || = 0. Therefore, lim ,_S =Pz

3.3 Remark

Theorem 3.2 improves Theorem 1.3 by Kurokawa and
Takahashi in the following sense.
It is sufficient to put = 0 in Theorem 3.2.
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