
Abstract
Objectives: To implement a Service based Test Automation framework for testing web services in automotive Human
Machine Interface (HMI) application. In this paper, we propose a service based test automation framework for web service
testing in automotive HMI (Human Machine Interface). Methods: There are number of testing frameworks available for
testing mobile application; In this proposal, an automated testing framework has been designed to test services which
communicate between mobile application and real vehicles (cars) using differenttechnologies web services and mobility
testing tools. Findings: In our findings, a customized mobile test automation framework has been developed which can
eliminate most of the errors that may exist in manual testing by human and reduce a lot of time. Moreover, the framework
can easily be extended to find a broader range of testing in automotive mobile applications. The techniques and mechanisms
used in creating a test automation framework leads to analyze how they can do regression testing on mobile services in
an efficient manner.

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(15), 53253, July 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Service based Mobile Test Automation Framework
for Automotive HMI

Rajkumar J. Bhojan1*, K. Vivekanandan2, Subramanian Ganesan3 and Pankaj Moses Monickaraj4

1Wipro Technologies, Bangalore - 560100, India; jbrkumar@gmail.com
2BSMED, Bharathiar University, Coimbatore – 641046, India; vivekbsmed@gmail.com

3Electrical & Computer Engineering, Oakland University, Rochester, MI, USA; ganesan@oakland.edu
4Christ University, Bangalore - 560029, India; pankj.moses@gmail.com

1. Introduction

Presently, web services are having an increasingly impor-
tant role in the construction of computer applications
used remotely by many users. Web services are Web
components only accessible via interfaces published in
standard Web services-specific interface definition lan-
guages (e.g. WSDL) and accessible via standard network
protocols (e.g. SOAP). Therefore, how to design test cases
for a Web service using its limited information exposed
remains a challenge. Second, one major goal of adopting
the Web services technology is to dynamically compose
existing Web services as components to quickly construct
a new service. Therefore, Web services testing usually
imply that multiple service components have to be tested
in an efficient and lightweight (i.e., without maintaining

dedicated network connections throughout a testing pro-
cess) manner. Third, how to mitigate the overhead caused
by the Web services-specific transport protocols (e.g.
SOAP) deserves special attention1.

2. Mobile Service Testing
In 4 indicated that most of the banking apps on a mobile
devices act as a front end that invoke services on a back-
end server of the bank, which might contact even more
servers. Klaus Haller4 reiterates that the essence of mobile
test automation. There are two reasons to automate mobile
test cases: to ensure minimal functional coverage and to
achieve scalable test configuration coverage. Minimal
functional coverage is a safety net. The test scripts cover
the basic features of the app and run, for example, each

Keywords: Automotive Testing, Human Machine Interface, Mobile Test Automation, Regression Testing, Web Services

Service based Mobile Test Automation Framework for Automotive HMI

Indian Journal of Science and TechnologyVol 8 (15) | July 2015 | www.indjst.org 2

night. They cover front-end tests and front-end–back-
end-integration tests. A basic test infrastructure consists
of a PC running the test script, one local device, and an
automation tool. Scalable test configuration coverage
checks whether the app runs problem-free on all relevant
devices and OS versions. Test scripts must run in parallel
on multiple devices, which require a private device cloud
with parallelization features.

2.1 Mobile Testing Challenges
Following are the mobile testing challenges5:

• As mobile apps receive inputs from different
providers like users, sensors and connectivity
devices, it leads to the unpredictability and high
variability of the inputs.

• Languages add some specific constructs for man-
aging mobility, energy consumption and sensing.

• . In order to do mobile apps functional testing, it
needs application and the environment like air-
plane mode, meeting and low battery.

• In GUI testing, the real challenge lies in testing
native applications on devices and adequate ren-
dering of data by different devices.

•. Mobile device performance and reliability test-
ing depends on the mobile resources, operational
mode and connectivity quality.

• Security testing is a major challenge as mobility
of the device into networks with different secu-
rity levels.

2.2 The Following are the Criteria for
Choosing Mobile Devices

Following are the list of factors to be considered when
choosing set of devices for mobile testing6,7.

• Top supported devices and manufacturers
• Target market (age, geography, business/plea-

sure/youth, etc…)
• Supporting devices : Smartphones, tablets or

both
• Relevant screen sizes
• Relevant regions, carriers and network technolo-

gies
• Major supporting OS (i.e. iOS, Windows,

Android)6,7

2.3 Existing Framework
According to 8, Automated testing of distributed, service-
oriented applications generally falls into two execution
models: centralized and decentralized. In a centralized
model, a testing control service sends testing commands to
services installed on each host testing, generally in a push
model. In a decentralized model, there is no centralized
control service, and testing occurs in a purely distributed
manner. If synchronization is required, decentralized
infrastructures may use network lock files, or they may
require separate daemons with intimate knowledge of test
sequencing or custom messaging protocols. In this frame-
work, web services are dealt with mobile applications and
web application servers. Unlike the above mentioned
framework, our framework is dealing with mobile appli-
cations with real vehicles communications.

In 9, AppACTS framework was introduced. It is
aimed at helping developers to improve mobile applica-
tion compatibility testing efficiency, save cost and ensure
mobile application quality and reliability. Mobile App
Automated Compatibility Testing Service (AppACTS) is
an online mobile app compatibility testing cloud facil-
ity from where end users could upload a mobile app for
automated device compatibility testing and view the test-
ing result. AppACTS is based on a scalable architecture
that supports to plug in and pull out mobile devices on
demand and add or reduced slave nodes and mobile serv-
ers at any time.

3. Communication between
Mobile Devices and Vehicles

The last two decades have seen computer and communica-
tion technology become more prevalent in cars, enabling
the incorporation of systems and devices for both driver
support (e.g., navigation aids) and infotainment (e.g.
news and email)10. Most of the major car manufactures
like GM, Ford, Nissan, Lexus, Audi, etc., use mobile appli-
cations as enhanced features in their cars. The mobile
applications such as RemoteLink11, ApplinkSync12, Audi
Connect13 and myBMW14 are communicating with own-
er’s cars and control the vehicles from anywhere.

The following are some of the generic operations of
the above said mobile applications:

• Makes a secure connection between vehicle and
mobile device.

• Start and stop vehicle engines

Rajkumar J. Bhojan, K. Vivekanandan, Subramanian Ganesan and Pankaj Moses Monickaraj

Indian Journal of Science and Technology 3Vol 8 (15) | July 2015 | www.indjst.org

Figure 1. MobileVehicle Connection.

• Check real-time fuel and oil levels
• Hands free calling
• Lock and Unlock cars
• Navigation set up
• Vehicle Finder
In order to perform the above mentioned operations

through mobile application, we propose a test automation
framework for evaluating mobile application’s operations
whenever they communicate with corresponding vehi-
cles.

The steps involved in mobile vehicle communication
are described in the following flow chart in Figure 1.

4. Implementation
In order to get some unique identified for the application,
the application has to be registered. When user wants to
access something on the service, user makes a request to
the service using our unique identifier and telling it where
to send the user after they authenticate. User will login to
the service using the mobile app we launched for that ser-

vice and choose to grant us application certain privileges.
The service will redirect the user to the callback URL
that provided and include a code, user can use to get an
access token. Then user call the service grants us an access
token which user can use to access services user has been
granted permissions for. The next time when user needs
to make a call, user can just use that access token instead
of going through this whole process again.

As shown in the Figure 1, the authorization server val-
idates the request. If the request is valid, the authorization
server authenticates the user and obtains the authoriza-
tion decision from the user. If the user grants the access
request, the authorization server issues an authorization
code and delivers it to the client.

As shown in the Figure 2, ant build will invoke Java
Driver class. As authors K. Vivekanandan, Rajkumar
Bhojan, et al, describe in 15, the Java Driver class opens
the application, based on the Run Flag status (RUN/
NO RUN) given in the data sheet, fetches the data from
Data Table and sends it to the AUT (Application Under
Test). For better usability, we initiated our service based

Service based Mobile Test Automation Framework for Automotive HMI

Indian Journal of Science and TechnologyVol 8 (15) | July 2015 | www.indjst.org 4

automated testing from a functional operation, i.e. func-
tional test script will login to mobile app and clicks on
’Lock‘ command button on the mobile device. Lock is
one of operations to lock the vehicle doors. This request
will be sent to vehicle and the response will be received
after proper authentication as shown in the screen shots
in Figure 3. Once the first cycles gets completed, the con-
troller goes to next record in the Data Table, it searches
for Run Flag Status, if it is ’RUN‘, it executes the second
test scripts and so on until it reaches the ’END‘. If run
flag status is ’NO RUN‘, controller skips the correspond-
ing test script and moves to the next script.

In this Service based framework, Experitest’s
SeeTest16 tool has been used for front end operations

of the application. With the help of SeeTest object identi-
fier, we extracted the application elements that we wanted
to run a test and stored in object repository. Once it was
extracted, the elements were showing up in the Object
Repository (OR). Then we incorporate elements to our

TestNg framework17 written in Java. Java scripts were
customized for adding features like fetching data from
xls sheet and xml files, merging one or more executable
methods and sending the reports in html/xslt formats. In
this report, we will be able to find out how tests are passed
and how tests are failed in a test suite. A sample report
table is shown in Table 1. The failed test steps will also
have links which redirects to screen shots of the errors
captured during the execution. If the request is valid, the
authorization server authenticates the user and sends suc-
cess response to the user. If authentication fails, user will
get failed messages from the server.

5. Conclusion
In our research, test automation framework has been
developed to analyze the web service transactions between
mobile application and real vehicles. It has been found
that this framework is much simpler and efficient way of

Figure 2. Service based test automation framework architecture.

Rajkumar J. Bhojan, K. Vivekanandan, Subramanian Ganesan and Pankaj Moses Monickaraj

Indian Journal of Science and Technology 5Vol 8 (15) | July 2015 | www.indjst.org

Figure 3. Request and response from a vehicle in RLL application.

Step No Step Description Expected Result Actual Result Status

1.0 Login into Remote Link User must be logged in User is logged in Pass

1.1 Verify if sending lock message
appears

Sending lock message must
appear Sending message appears Pass

1.2 Verify if ‘Vehicle is now locked’ alert
message is present Alert must be present Alert is present Pass

1.3 Verify if ‘Vehicle is now locked’ alert
is dismissed on clicking OK Alert must be dismissed Alert is dismissed Pass

1.4 Verify if lock icon shows correct
update date and time

Lock icon must show correct
date and time

Lock icon shows correct
date and time Pass

2.0 Verify if logout is successful User must return to login page User return to login page Pass

Table 1. Sample HTML Output for Lock Command Response

Service based Mobile Test Automation Framework for Automotive HMI

Indian Journal of Science and TechnologyVol 8 (15) | July 2015 | www.indjst.org 6

executing regression test suites. Moreover, the existing
framework can easily be enhanced for other mobile appli-
cations. Our future work includes cloud based mobile
testing of the WS transactions standards and their perfor-
mance evaluation.

6. References
1. Zhang J. A Mobile Agent-Based Tool Supporting Web

Services Testing. SpringerScience Business Media LLC:
2010 Jan 7. Doi: 10.1007/s11277-009-9879-9.

2. Manova D, Ilieva S, Petrova-Antonova D. Testing Web
Service’s Compositions Following TASSA Methodology.
International Conference on Computer Systems and
Technologies (CompSysTech’13). New York, NY, USA:
ACM 978-1-4503-2021-4/13/06. p. 185–92.

3. Werner C, BuschmannC, Fischer S. WSDL-driven SOAP
compression. International Journal of Web Services
Research. 2005; 2(1):14–35.

4. Haller K. Mobile Testing. ACMSIGSOFT Software
Engineering. Doi: 10.1145/2532780.2532813.

5. Kirubakaran B, Karthikeyani V. Mobile Application Testing
- Challenges and Solution Approach through Automation.
International Conference on Pattern Recognition,
Informatics and Mobile Engineering. PRIME 2013. 2013
Feb 21-22; Tamil nadu, India.

6. Available from: www.perfectomobile.com

7. Available from: http://www.mbweek.com/2013/07/03/3731
8. Edmondson J, Gokhale A, Neema S. Automating Testing

of Service-oriented Mobile Applications with Distributed
Knowledge and Reasoning. IEEE International Conference
on Service-Oriented Computing and Applications. SOCA;
2011 Dec 12-14; Irvine, California. p. 1–4.

9. Huang J-F. AppACTS: Mobile App Automated
Compatibility Testing Service. 2nd IEEE International
Conference on Mobile Cloud Computing, Services and
Engineering; 2014 Apr 8-11; Oxford; p.85-90. Doi: 10.1109/
MobileCloud.2014.13.

10. Irune AA. Evalulating the Visual Demand of In-Vehicle
Information System: The Development of a New Method.
2011; 3(1). Doi: 10.4018/978-1-4666-2068-1.ch001.

11. Available from: www.onstar.com
12. Available from: http://support.ford.com/sync-technology/

applink-overview-sync
13. Available from: http://www.audiusa.com/innovation/intel-

ligence/audi-connect
14. Available from: http://www.bmw.com/com/en/owners/

bmw_apps_2013/apps/my_bmw_remote_app/index.html
15. Vivekanandan K, Bhojan R, Ganesan S. Cloud Enabled

Test Evaluation on Mobile Web Applications. International
Journal of Advanced Research in Computer and
Communication Engineering. 2014 Jun; 3(6).

16. Available from: http://www.experitest.com
17. Available from: http://testng.org/doc/index.html

