
Abstract
Background/Objectives: Proteins are the fundamental units of biology; the mechanism by which primary sequence of 
proteins is predicted into its secondary structure is not yet accurately achieved. Methods/Statistical analysis: In this 
paper, BAT inspired FLANN (Functional Link Artificial Neural Network) model for protein secondary structure prediction 
with low computation cost and accuracy has been proposed. The proposed model consists of three different phases; i) First, 
the primary sequence of amino acid is converted into dynamic matrix for different window sizes then this dynamic matrix 
is used to derive correlation matrix, ii) Second, FLANN is used to classify each sequence of correlation matrix with different 
learning parameters and random weights. BAT inspired optimization algorithm has been used to optimize the weight 
and learning parameters of BAT-FLANN, and (iii) finally, refinement of secondary structure result. Results: Experiments 
were conducted with real datasets of some primary sequence on RS126 and CB396 datasets. Proposed method has been 
compared with existing DSC, NNSSP, PHD, PREDATOR, ZPRED, MULPRED, SVM models and found to be more promising. 
Conclusion/Application: The proposed method achieves average Q3 accuracy 81.2% and 82.7% for CB396 and RS126 
dataset respectively. Moreover the segment overlap (SOV) is 76.1% and 75.3% for CB396 and RS126 dataset respectively. 
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1.  Introduction
The phenomena of forecasting the secondary state of a 
protein from primary structure are referred as Protein 
Secondary structure Prediction (PSP). To determine the 
biological function1 of three dimensions folded struc-
ture of amino acid its secondary structure is of great 
importance. Knowing 3D structure of protein will help 
in medicine for design of drug and enzymes2 that shows 
the importance of PSP in the field of bioinformatics and 
theoretical chemistry. Protein is built up of 20 different 
amino acids repeating to form a polymer chain with dif-
ferent characteristics. Basically any primary structure can 
be distinguished according to their Secondary Structure 
(SS). Usually they are classified into eight classes: H 
(α-helix), G (310-helix), I (p-helix), E (b-strand), B 

(b-bridge), T (turn), S (bend) and – (rest), out of which 
they are mostly classified as three classes: helices, sheets 
and other structural conformations such as loops, turns 
and coils. The spiral string formed by hydrogen bond 
between CO and NH are identified as Helix, whereas 
sheets are formed by stretched polypeptide backbone3–5. 
Most of the researcher state that X-ray crystallography 
and multi-dimensional magnetic resonance methods are 
the two most effective methodologies in identifying the 
3D protein structure. They can achieve a high precision 
in the cost of long time period and the molecular weight 
is also confined to 20,000. In this paper, first a dynamic 
matrix of sliding window of different sizes has been gen-
erated. This matrix serves as the input data for training 
the FLANN model6 and the weight of this model has been 
optimized using BAT algorithm. The paper addresses the 
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problem of protein secondary structure prediction7–10 
using a Meta heuristic approach by improving accuracy 
comparing with the existing model. Results show that, the 
prediction accuracy achieved is almost 83%. 

Protein structure prediction was early made by Chou-
Fasman and GOR11,12 method 1960s and 1970s. There work 
based on helix-coil transition models and predicting alpha 
helices. In 1970s predictions on beta sheets were made that 
relies on statistics and probability parameters generated 
from known solved structures. The best accuracy pre-
dicted by this method is near about 60-65%3–5. Whereas 
with current technology: Neural Nets, SVM, and large 
databases of known protein structures can achieve upto 
80%13–16. Probably the earliest attempts at using multiple 
sequence information for secondary structure were help-
ful in prediction of alpha sub unit17–19. However the use of 
multiple sequence data is popularised by the work done 
by Benner & Gerloff20 for Secondary Structure Prediction 
(SSP) for the cAMP–dependent kinases. Here an effort 
is made to discover most conserved regions of a protein 
sequence buried in core or functionally important for 
secondary structure prediction. By the help of clustering 
Benner and Gerloff20 demonstrated that the residue can 
be predicted with reasonable accuracy. Rost and Sander 
21 had made a break-through by introducing the feed 
forward neural network strained by back-propagation22 
that replaces the use of human intervention for SSP. Our 
proposed framework is also uses neural networks but in 
simplified form that is Functional Link Artificial Neural 
Network (FLANN) that achieves high degree of predic-
tion accuracy and can be easily tested and run on any 
common computer system.

The layout of the paper is as follows: background 
knowledge required for PSP and materials and method is 
discussed in section 2. Proposed PSP model is discussed 
in section 3 with the working procedure of BAT, section 4 
deals with experimental evaluation and section 5 gives the 
conclusion and future direction of the proposed work.

2  Materials and Method

2.1  Dataset 
Many researchers have opted for RS126 dataset used 
by Rost, & Sander 199321 and CB396 dataset by Cuff, & 
Barton23 for creating an effective prediction tool. These 
datasets are extreme non-homologous in nature RS126 
is one of the ideal dataset that helps the researcher for 

implementing different methodology for PSP. The dataset 
consist of 23,346 amino acids from 126 non-homologous 
amino acid sequences. The population of helix, beta 
strand and coil in terms of percentage is found to be 32%, 
21% and 47% respectively. Online database such as PDB 
is used to download RS126. For better result analysis 
another dataset CB396 is used. It consists of 396 num-
bers of non-redundant proteins. Standard DSSP24 labels 
is being used in this paper for the training samples. These 
eight structural classes as per DSSP labels are drop down 
to three using following methods:

{H,I,G} → H(Helix), {E,B} → B(Beta Sheet), Rest{S,T,C} •	
→ C(Coil)
{H,G}→ H(Helix), {E} → B(Beta Sheet), Rest{S,T,B,I,C} •	
→ C(Coil)
{H}→ H(Helix), {E}→ B(Beta Sheet), Rest{G,S,T,B,I,C} •	
→ C(Coil)
{H,G}→ H(Helix), {E,B}→ B(Beta Sheet), •	
Rest{S,T,B,I,C}→ C(Coil)

2.2 � Methods for Secondary Structure 
Prediction

There are many methods which are either probabilistic or 
derived from fusion of statistics and artificial intelligence. 
Some of them are: a) DSC24 which applies GOR residue 
and amino acid position26 combined with the information 
from multiple sequence alignment. Linear discrimination 
with filtering is applied to deduced weights that remove 
erroneous predictions, b) NNSSP27 is a technique based 
upon environmental scoring scheme. It considers N and 
C terminal positions of helices and strands for predic-
tion; c) PHD21 is the ideal architecture consists of three 
level neural networks with a window of 13 amino acids. 
It is also known as a structure to structure network that 
improves prediction accuracy secondary structures. d) 
PREDATOR28 embedded with SIM software29 uses an 
internal pair for alignment in contrast to global multiple 
sequence alignment then algorithm is used to predict sec-
ondary structure segments and e) ZPRED18 is based on 
the GOR method by Garnier J. et al.,26 with an addition to 
extra calculated conserved value weights30. 

2.3  Assessment of Accuracy
For measurement of accuracy of the prediction we used 
two methods 1) Average31 Q3 and 2) segment overlap 
(sov)32. Q3 measures the overall percentage of predicted 
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residues in terms of (H, E and C), to observe as given 
in (1). 
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Similarly segment overlap computation is performed 
for each datasets. Segment overlap tries to capture seg-
ment prediction and their ignorance level varies from 
of 35% (random protein pairs) to an average 91% for 
homologous protein pairs. Segment overlap is calculated 
by (2)32
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Where, N denotes the total number of residues, 
minov and maxov are the minimum and maximum 
overlap in the extent of the segment. δ is the minimum 
variation with a ratio of 1.0 where there are only minor 
deviations at the ends of segments. Per-class accuracy 
criterion Qi

obs% as given in (3) for classi is defined as the 
percentage of correctly classified residues in the classi, 
to all residues observed in classi

33. Where, Mii is the 
number of residues is observed in classi and classified 
as i, and obsi is the total number of residues observed 
in classi.
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3. � A Meta-heuristic Framework 
for Secondary Protein 
Structure Prediction

The proposed meta-heuristic framework for secondary 
protein structure prediction is divided into three phases 
as shown in Figure 1. All the phases are described below. 

Phase 1: Protein primary sequence data is collected 
from PDB RS126 and is stored in FASTA format. 
Algorithm-I helps in converting primary sequence of 
protein in dynamic matrix X x x xn= …{ }1 2, , , , where, 
x ki = , k is an any odd number also termed as window 

size of protein primary sequence that is used to feed into 
network for prediction of primary residue at k/2 position. 
For example, PDB ID: 2MHU has got primary sequence 

Figure 1.  A meta-heuristic framework for secondary 
protein structure prediction.
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as: “MDPNCSCAAGDSCTCAGSCKCKECKCTSCK” of 
length I=30. For a window size of I=17 we get; a dynamic 
matrix of order n × m. where, n and m can be computed 
using n=L-k+1 and m=k. Table 1 depicts first 17 columns 
are generated due to primary sequence and 18th column 
indicates the class to which k/2=9th residue (indicated 
in bold) of every x Xi ∈  of primary sequence belongs 
to. This is nothing but the expected secondary structure 
which our network will be trained with.

Algorithm 1: Creation of Dynamic Matrix
function dm=create_dm (ps, k, ss)
where, ps=” MDPNCSCAAGDSCTCAGSCKCKE 
CKCTSCK”, k=17, ss=”--SS--SSSSS----TT----SS---
GGG-“
dm=[];
[x y]=size(ps);
t=1;
mid=ceil(k/2);
for i=1:x-k+1
dm(t,1:k)= ps(i:k+i-1)’;
dm(t, k+1)= ss(mid+i-1);
t=t+1;
end

It can be noted that primary sequence is in alphabetical 
order and this paper proposes a novel way to find cor-
relation among them and achieve correlation matrix. 
Correlation between the matrixes can be calculated using 
the following three steps:
Step 1. Finding the impact factor ζxi for each residue of
x Xi ∈ , looking into the Figure 2; impact factor of ith row 
can be calculated as:
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Table 1.  Dynamic matrix for PDBID: 2MHU for window size k = 17

Sl. No PDBID: 2MHU for window size k = 17
Secondary 
structure

1 ‘M’ ‘D’ ‘P’ ‘N’ ‘C’ ‘S’ ‘C’ ‘A’ ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’
2 ‘D’ ‘P’ ‘N’ ‘C’ ‘S’ ‘C’ ‘A’ ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘S’
3 ‘P’ ‘N’ ‘C’ ‘S’ ‘C’ ‘A’ ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘S’
4 ‘N’ ‘C’ ‘S’ ‘C’ ‘A’ ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘-’
5 ‘C’ ‘S’ ‘C’ ‘A’ ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘-’
6 ‘S’ ‘C’ ‘A’ ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘-’
7 ‘C’ ‘A’ ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘E’ ‘-’
8 ‘A’ ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘E’ ‘C’ ‘T’
9 ‘A’ ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘E’ ‘C’ ‘K’ ‘T’

10 ‘G’ ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘E’ ‘C’ ‘K’ ‘C’ ‘-’
11 ‘D’ ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘E’ ‘C’ ‘K’ ‘C’ ‘T’ ‘-’
12 ‘S’ ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘E’ ‘C’ ‘K’ ‘C’ ‘T’ ‘S’ ‘-’
13 ‘C’ ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘E’ ‘C’ ‘K’ ‘C’ ‘T’ ‘S’ ‘C’ ‘-’
14 ‘T’ ‘C’ ‘A’ ‘G’ ‘S’ ‘C’ ‘K’ ‘C’ ‘K’ ‘E’ ‘C’ ‘K’ ‘C’ ‘T’ ‘S’ ‘C’ ‘K’ ‘S’
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Step 3: Calculating the correlating value yxi
 for feature 
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By applying above three steps we get the correlation 
matrix of PDB: 2MHU for window size 17 as shown in 
Table 2.

Matrix of Table 2 has been passed through splitter 
algorithm that splits matrix into two different propor-
tions, one for training and other for testing as shown in 
Figure 3 and demonstrated in algorithm 2. 

Algorithm 2: Splitter 
function [train_mat test_mat]=splitter(dm,per)
where, dm is the dynamic matrix created by algorithm 
1and per is the training percentage
[x y]=size(dm);
train=ceil(x×per/100);
test=x-train;
train_mat=dm(1:train,:);
test_mat=dm(train+1:x,:);

Phase 2: Training of BAT-FLANN Model
When, BAT sends signal with pulse rate (sound wave 

of frequency) 20 kHz to 200 kHz as shown in Figure 4. 
This signal deflects back after striking the object to BAT 
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Table 2.  Correlation matrix of PDB: 2MHU for window size k = 17

Sl. No PDBID: 2MHU for window size k = 17
Secondary 
structure

1 0.10 0.03 0.17 0.03 0.07 -0.17 0.05 -0.13 0.08 0.04 0.20 -0.11 0.20 -0.13 0.08 0.11 0.05 ‘S’
2 0.16 -0.06 0.20 0.34 -0.17 0.28 -0.44 0.10 0.00 0.14 0.24 0.32 -0.30 0.12 0.17 -0.12 0.43 ‘S’
3 0.08 -0.14 0.53 0.20 0.29 -0.10 -0.16 -0.10 -0.12 0.06 0.65 -0.19 0.22 0.02 -0.01 0.11 0.47 ‘S’
4 -0.01 0.38 0.23 0.63 -0.29 0.12 -0.34 -0.25 -0.04 0.65 -0.10 0.38 -0.05 -0.17 0.20 0.39 0.00 ‘-’
5 1.01 0.04 1.03 0.21 -0.30 0.07 -0.73 0.08 0.79 -0.26 0.81 0.08 -0.35 0.10 0.75 -0.67 0.87 ‘-’
6 0.19 0.48 0.34 0.20 -0.13 -0.23 -0.19 0.22 -0.14 0.35 0.18 -0.03 -0.03 0.34 -0.14 0.35 0.04 ‘-’
7 0.58 0.24 0.46 0.10 -0.30 -0.23 0.00 -0.28 0.51 0.08 0.19 -0.11 0.19 -0.21 0.47 -0.08 0.02 ‘-’
8 0.40 0.09 0.34 0.18 -0.35 0.39 -0.71 0.42 0.16 0.03 0.23 0.41 -0.51 0.38 0.19 -0.38 0.62 ‘T’
9 -0.01 0.03 0.20 0.00 0.37 -0.38 0.21 -0.12 -0.16 0.00 0.46 -0.27 0.36 0.04 -0.24 0.36 0.06 ‘T’

10 0.14 -0.15 0.34 0.98 -0.60 0.80 -0.90 -0.20 0.06 0.69 0.12 0.81 -0.39 -0.32 0.71 -0.15 0.74 ‘-’
11 -0.07 -0.79 0.70 -0.49 0.69 -0.28 -0.20 -0.84 0.72 -0.30 0.18 0.34 -0.85 0.68 -0.45 0.36 -0.06 ‘-’
12 0.21 0.84 -0.68 0.91 -0.87 -0.09 0.19 0.91 -0.86 0.78 -0.48 -0.55 0.93 -0.63 0.87 -0.76 0.04 ‘-’
13 1.80 -1.12 1.29 -0.93 -0.77 -0.15 1.68 -0.79 1.44 -0.30 -1.49 1.74 -0.53 1.33 -0.97 -1.00 1.80 ‘-’
14 0.01 0.66 -0.70 -0.38 -0.51 1.02 0.40 0.72 -0.38 -0.64 0.22 0.22 0.74 -0.70 -0.42 0.27 0.31 ‘S’

Figure 3.  Splitter used for dividing data into training set 
and testing set.
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Figure 5. Echo signal use to calculate the distance S. 

Figure 4.  BAT sends sound signal with frequency c1.
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as echo signal (Figure 5) has been used to calculate the 
distance S34,35. The minimum distance from BAT to any 
object is the destination of the BAT. BAT flies towards 
the minimum distance object. BAT reduces its pulse rate 
when it reaches nearer the object. BAT continues to do 
so till the distance becomes S=0. Traditional FLANN 

Figure 5.  Echo signal use to calculate the distance S.
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Figure 5. Echo signal use to calculate the distance S. 
model have set of input neurons and one output neuron. 
These neurons are connected with some random weight 
wt. Training data X x x xr= …{ }1 2, , , ,  of order r × m can 
be mapped into higher dimensional space ϑ of order r× 
(m ×3 ) by functional expansion using trigonometric 
function (9).

	
J p p p p p p= ( ) ( ) …x sin cos x sin cos x sin cosx x x x r x xr1 21 1 2 2

, , , , , , ., , ,
rr( )





� (9)

In this paper we embedded the concept of BAT by 
further increasing the high dimension dataset ϑ by φ as 
given in equation (10).

	 j J J J= ( ) ( ) … ( ) 1 1 2 2, , , , , ,f f fr r � (10)

Where, fK is the pulse rate of kth BAT and can be given 
as (11) where, c1 is the pulse rate used to control the fre-
quency fK of BAT BK. The value of c1 is auto adjusted in 
each iteration. Initially, c1 is set to 0.2.

	 f c
x

mk
i

m
ki

= ∗
( )

=∑
1

1 � (11)
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As given in the Figure 6, training data φ is input to 
the FlANN, weight wt of FLANN is randomly taken in 
between [0.5 to –0.5]. 

Working of BAT-FLANN can be explained using 
following steps:

Step 1: Calculation of distance
Distance S of the object z (here object is the target second-
ary structure code in terms of ‘H’, ‘E’, and ‘C’) from BAT BK 
is calculated by multiplying φk with wt for each object z. 

	 S wtobject kz
= j x � (12)

Output of neuron can be calculated using tansigmoid 
function as given in (13) 

	
Sop Sz objectz

=
+( )−

1

1 exp � (13)

Step 2: Updating position of BAT
Position of BAT with successive iteration tries to reach 
nearer to object [‘H’ ‘E’ ‘C’]. With each iteration, error is 
calculated by (14) which helps to update position of BAT 
using (15). 

	 E Sk opz
= −1 � (14)

	 P P EK K K= + � (15)

When BAT starts flying it is assumed that the position 
is initialize to zero. Its position keeps on changing when it 
reaches nearer to the object. 

Step 3: Updation of frequency fk and weight wt 
As the BAT reaches nearer to its object the frequency 
decreases. This can be achieved by controlling the value 
of c1 of (11) by (16), c2 is a constant treated as the BAT 
learning parameter and set to 0.0011 and μ is momentum 
initialized to 0.5.

	 c f c E Pk k k1 2
2= + ∗ ∗ � (16)

	 wt wt Ek= + ∗ ∗2 m � (17)

Phase 3: Testing Data is used to Predict Secondary 
Structure by the BAT-FLANN

This secondary structure is compared with original 
secondary structure and accordingly confusion matrix 
is created. As per the DSSP: H(helix) ={G (310 – helix), 
H (α- helix), I}, B(strands)={E (β-strand), B (β-bridge)}, 
C(coil, T, S)

{H, I, G} → H (Helix), {E,B} → E(Beta Sheet), Rest{S,T,C} 
→ C(Coil)

According to the DSSP interpretation Table 3 has 
been formed. Where, first row is the primary sequence 
whose expected secondary structure is given in second 
row. DSSP interpretation secondary structure is given 
at third row. BAT-FLANN output is given in fourth row. 
DSSP interpretation and predicted output is compared 
and confusion matrix is created as shown in Table 4.

Accuracy Q3 can be calculated by using (1) 

	 Q3
9

10
100 90= × = % � (18)

3.1  Refinement of Result
Refinement of the result is done according to 37 which state 
that “For each predicted result with less than three consec-
utive H, it is sure that such prediction result contains some 
wrong prediction results. For better performance the pat-
tern HXH (X is either E or C) is first converted to HHH. 

Figure 6.  Working procedure of BAT-FLANN model.

9

When, BAT sends signal with pulse rate (sound wave of frequency) 20 kHz to 200 kHz 
as shown in Figure 4. This signal deflects back after striking the object to BAT as echo signal 
(Figure 5) has been used to calculate the distance S34,35. The minimum distance from BAT to any 
object is the destination of the BAT. BAT flies towards the minimum distance object. BAT 
reduces its pulse rate when it reaches nearer the object. BAT continues to do so till the distance 
becomes S=0. Traditional FLANN model have set of input neurons and one output neuron. These 
neurons are connected with some random weight wt. Training data  of order r × 
m can be mapped into higher dimensional space  of order r× (m ×3 ) by functional expansion 
using trigonometric function (9). 

         (9) 

In this paper we embedded the concept of BAT by further increasing the high dimension dataset 
 by as given in equation (10). 

]            (10) 

Where,  is the pulse rate of kth BAT and can be given as (11) where, c1 is the pulse rate used to 
control the frequency  of BAT . The value of c1 is auto adjusted in each iteration. Initially, c1 
is set to 0.2. 

               (11)                                                      

As given in the Figure 6, training data  is input to the FlANN, weight wt of FLANN is 
randomly taken in between [0.5 to -0.5].  

 

Figure 6. Working procedure of BAT-FLANN model. 
 
Working of BAT-FLANN can be explained using following steps: 

Step 1: Calculation of distance 

Distance S of the object z (here object is the target secondary structure code in terms of ‘H’, ‘E’, 
and ‘C’) from BAT BK is calculated by multiplying  with wt for each object z.  
 

(12)                   

Table 4.  Confusion 
matrix 

H E C –
H 0 0 0 0
E 0 0 0 0
C 0 0 5 0
– 1 0 0 4

Table 3.  Accuracy comparison

Primary Sequence A G D S C T C A G S

Secondary Sequence S S S – – – – T T –

CASP interpretation34 C C C – – – – C C –

Predicted O/p C C C – – – H C C –

Accuracy 1 1 1 1 1 1 0 1 1 1
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In the patterns EHX/XHE, EHHX/XHHE, EHHHX/
XHHHE, all H are converted to E. In the patterns CHC, 
CHHC and CHHHC, all H are converted to C”. 

4.  Experimental Evaluation
The proposed model has been implemented and tested on 
MATLAB 10, on Pentium 4 with 2GB RAM. The prediction 
of protein structure is conducted using machine learning 
algorithm BAT-FLANN. Datasets RS12621and CB39623 
without any preprocessing step is being used for training 
and testing of BAT-FLANN algorithm followed by evalu-
ation. Figure 7 and Figure 8 shows the Q3 accuracy for 
two datasets having PDB id: 1gdj with total residue length 
153 and 1ppt having residue length 37 belongs to family of 
RS126. Those two figures clearly reveals that our proposed 
method surpass the accuracy predicted by other methods. 
Similarly, Figure 9 and Figure 10 shows the Q3 accuracy 

Figure 8.  Q3 accuracy graph for 1ppt data.
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Figure 7. Q3 accuracy graph for 1gdj data.         Figure 8. Q3 accuracy graph for 1ppt data. 

 
Figure 9. Q3 accuracy graph for 3rnt data.        Figure 10. Q3 accuracy graph for 1acx data. 

Table 5. Accuracy per class for protein structure based on secondary structure state for RS126 

WINDOW
SIZE K

BAT-FLANN

Q3
11 0.8 0.82 0.87 0.830
13 0.86 0.81 0.79 0.820
15 0.87 0.79 0.83 0.830
17 0.87 0.84 0.88 0.863
19 0.88 0.82 0.76 0.820
21 0.83 0.81 0.76 0.800

Average 0.827
 
Table 6. Accuracy per class for protein structure based on secondary structure state for CB396 

WINDOW
SIZE K

BAT-FLANN
Q3 

11 0.83 0.81 0.74 0.793 
13 0.87 0.83 0.75 0.817 
15 0.89 0.79 0.77 0.817 

Figure 7.  Q3 accuracy graph for 1gdj data.
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Table 6. Accuracy per class for protein structure based on secondary structure state for CB396 

WINDOW
SIZE K

BAT-FLANN
Q3 

11 0.83 0.81 0.74 0.793 
13 0.87 0.83 0.75 0.817 
15 0.89 0.79 0.77 0.817 

Figure 9.  Q3 accuracy graph for 3rnt data. 
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BAT-FLANN

Q3
11 0.8 0.82 0.87 0.830
13 0.86 0.81 0.79 0.820
15 0.87 0.79 0.83 0.830
17 0.87 0.84 0.88 0.863
19 0.88 0.82 0.76 0.820
21 0.83 0.81 0.76 0.800

Average 0.827
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Figure 10.  Q3 accuracy graph for 1acx data.
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Table 5. Accuracy per class for protein structure based on secondary structure state for RS126 

WINDOW
SIZE K

BAT-FLANN

Q3
11 0.8 0.82 0.87 0.830
13 0.86 0.81 0.79 0.820
15 0.87 0.79 0.83 0.830
17 0.87 0.84 0.88 0.863
19 0.88 0.82 0.76 0.820
21 0.83 0.81 0.76 0.800

Average 0.827
 
Table 6. Accuracy per class for protein structure based on secondary structure state for CB396 

WINDOW
SIZE K

BAT-FLANN
Q3 

11 0.83 0.81 0.74 0.793 
13 0.87 0.83 0.75 0.817 
15 0.89 0.79 0.77 0.817 

for two datasets having PDB id: 3rnt with total residue 
length 103 and 1acx having residue length 107 belonging 
to family of CB396. The RS126 and CB396 contain 126 
and 396 different datasets respectively; therefore it is not 
possible to show the graph comparison for every data. We 
have randomly used two datasets out of RS126 and CB396 
respectively for display. Q3 accuracy and segment overlap 
accuracy are evaluated and there average is tabulated in 
Table 5 and Table 6. This experiment is carried out using 
six different window sizes (segment length k): length 11, 
13, 15, 17, 19 and 21. Proposed method is compared with 
earlier method whose results in the form of Q3 and SOV 
are shown in Table 7 for both datasets respectively. Earlier 
methods Q3 and SOV are taken directly from there paper. 
Looking to Table 5 and 6 it is clear that the length 17 is 
found to be optimal for local protein structure for both 
the datasets. 
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Table 5.  Accuracy per class for protein structure 
based on secondary structure state for RS126

WINDOW SIZE K
BAT-FLANN

QH
% QE

% QC
% Q3

11 0.8 0.82 0.87 0.830

13 0.86 0.81 0.79 0.820

15 0.87 0.79 0.83 0.830

17 0.87 0.84 0.88 0.863

19 0.88 0.82 0.76 0.820

21 0.83 0.81 0.76 0.800

Average 0.827

Table 6.  Accuracy per class for protein structure 
based on secondary structure state for CB396

WINDOW SIZE K
BAT-FLANN

QH
% QE

% QC
% Q3

11 0.83 0.81 0.74 0.793

13 0.87 0.83 0.75 0.817

15 0.89 0.79 0.77 0.817

17 0.84 0.8 0.85 0.830

19 0.89 0.88 0.68 0.817

21 0.87 0.75 0.78 0.800

Average 0.812

Table 7.  Q3 and Segment Overlap Results for the Set of RS126, and CB396 Proteins 

Methods RS126          protein set CB396                protein

Q3 SOV33 Q3 SOV33

PHD33 73.5 73.5 71.9 75.3

DSC25 71.1 71.6 68.4 72.0

PREDATOR26 70.3 69.9 68.6 69.8

NNSSP27 72.7 70.6 71.4 71.3

CONSENSUS23 74.8 74.5 72.9 75.4

Zpred18 66.7 – 64.8 –

2-StageMSVMs38 78.0 72.6 76.3 73.2

Proposed Method 82.7 75.3 (SOV99)32 81.2 76.1 (SOV99)32

5.  Conclusion and Discussion
In this paper, an attempt had been made to map Protein 
Secondary Structure Prediction (PSSP) problem as a 
classification problem and used proposed BAT-FLANN 
algorithm for solving it. Proposed method is com-
pared with DSC, NNSSP, PHD, PREDATOR, ZPRED, 
MULPRED and SVM protein classification techniques. 
It can be observed that proposed method achieves 
maximum accuracy 83% for CB396 at window size 17 
and 86% for RS126 at window size 17. Whereas rest of 
the other methods on and average reaches up to 75% 
of accuracy. Proposed method has been tested with dif-
ferent percentage of training data and got the similar 
result. One of the major problems in PSSP is that, the 

data cannot be used directly for classification as it is 
in character format. For which we used a new and effi-
cient technique that convert these categorical data into 
numerical forms. Proposed encoding scheme discussed 
in section Phase 1 of proposed model truly focuses 
on the impact of every residue over the prediction 
and accordingly transformed into correlating matrix. 
Table 5-7 shows the direct output of our classifier after 
post-processing technique. 
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