Open Access Open Access  Restricted Access Subscription Access

Temperature Based Differences in Biological Parameters of Some Potential Species/Strains of Trichogramma


Affiliations
1 Department of Biotechnology, Center for Post Graduate Studies, Jain University, Jayanagar, 9 Bengaluru – 560011, Karnataka, India
2 ICAR- National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A Farm post, Bellary Road, Bangalore – 24, India
3 GPS Institute of Agricultural Management, Bengaluru - 560058, India
 

The effect of temperature on different Trichogramma spp. is an aspect to be understood for planning mass production strategies and further field releases. The key biological parameters of seven different spp./strains of trichogrammatids (viz. Trichogramma japonicum Ashmead, T. cordubensis Vargas and Carbello, T. achaeae Nagaraja and Nagarkatti, four strains of T. chilonis Ishii i.e. lab strain, Nilgiris strain, Kodaikanal strain and a strain acclimatized to constant 15°C) were investigated at five constant temperatures (16, 21, 26, 31 and 36±1°C with 60-70% RH and L: D-12:12). The different test temperatures had a significant impact on the biological parameters of the different species/strains. Based on longevity, parasitism and fecundity attributes, the best temperature to propagate these trichogrammatids was found to be 26°C. Considering the higher parasitism rates and the ability to parasitize and remain fecund at varied temperatures, T. chilonis Nilgiris strain proved to be the best. From the linear model of regression analysis, the upper temperature thresholds ranged from 35 to 46.37°C and the lower temperature thresholds were recorded to range between 9 and 12°C, with T. cordubensis appearing to be least temperature sensitive.

Keywords

Biology, Effect of Temperature, Trichogramma.
User
Notifications

  • Arnold CY. 1959. The development and significance of the base temperature in a linear heat unit system. Proc Am Soc Hort Sci. 74: 430–445.
  • Briere FJ, Pracos P, Roux AL, Pierre JS. 1999. A novel rate model of temperature-dependent development for arthropods. Environ Entomol. 28(1): 22–29. https://doi.org/10.1093/ee/28.1.22
  • Chailleux A, Biondi A, Han P, Tabone E, Desneux N. 2013. Suitability of the host-plant system Tuta absoluta-tomato for Trichogramma parasitoids and insights for biological control. J Econ Entomol. 106: 2310–2321. https://doi.org/10.1603/EC13092 PMid:24498728
  • Corrigan JE , Laing JE. 1994. Effects of the rearing host species and the host species attacked on performance by Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). Biol Control 23: 755–760. https://doi.org/10.1093/ee/23.3.755
  • El Arnaouty SA, Pizzol J, Galal HH, Kortam MN, Afifi AI, Beyssat V, Desneux N, Biondi A, HeikalI. 2014. Assessment of two Trichogramma species for the control of Tuta absoluta in North African tomato greenhouses. Afr Entomol. 22: 801–809. https://doi.org/10.4001/003.022.0410
  • Foerster RM, Foerster AL. 2009. Effect of temperature on the immature development and emergence of five species of Trichogramma. Biocontrol 54: 445–450. https://doi.org/10.1007/s10526-008-9195-4
  • Garcia P, Oliveira L, Tavares J. Comparative biology of three Trichogramma spp. populations captured in Azores. 1995b. Bol Mus Munic Funchal 4: 311–318.
  • Garcia P. 1995. Trichogramma cordubensis Vargas & Cabello (Hym.,Trichogrammatidae) nailha de S. Miguel (Açores): Aspectos de Sistematica e Ecologia. Dissertation, Universidade dos Açores, Acores. p. 1–114.
  • Harrison WW, King EG, Ouzts JD. 1985. Development of Trichogramma exiguum and Trichogramma pretiosum at five temperature regimes. Environ Entomol. 14: 118–121. https://doi.org/10.1093/ee/14.2.118
  • Lalitha Y, Ballal CR. 2015. Influence of seasons and inoculum dosages on the production efficiency of Corcyra cephalonica Stainton. J Biol Control 29(1): 25–30. https://doi.org/10.18641/jbc/29/1/75792
  • Lingappa S, Hegde S. 2001. Exploitation of bio-control potential in the management of insect pests of pulse crops. Biocontrol potential and its exploitation in sustainable agriculture. 2: 321–344.
  • Mani M, Krishnamoorthy A, Gopalkrishnan C, Rabindra R. 2001. Augmentative biocontrol within vegetable IPM- Indian scenario. In: Singh SP, Murphy ST, Ballal CR Editors. Augmentative Biocontrol. CABI Bioscience, UK and Project directorate of biological control (ICAR), Bangalore, India. p. 119–140.
  • Morris RF, WC Fulton. 1970. Models for the development and survival of Hyphantriacuneain relation to temperature and humidity. Mem Entomol Soc Can. 70: 1–60. https://doi.org/10.4039/entm10270fv
  • Nagarkatti S, Nagaraja H. 1977. Biosystematics of Trichogramma and Trichogrammatoidea species. Annu Rev of Entomol. 22:157–76. https://doi.org/10.1146/annurev.en.22.010177.001105
  • Pak GA, Oatman ER. 1982. Comparative life table, behavior and competition studies of Trichogramma brevicapillum and T. pretiosum. Ent Exp and Appl. 31: 68–79. https://doi.org/10.1111/j.1570-7458.1982.tb03183.x
  • Pavlik J. 1992. The effect of temperature on parasitization activity in Trichogramma spp. (Hymenoptera, Trichogrammatidae). Zool Jb Physiol. 96: 417–425.
  • Pizzol J, Pintureau B, Khonaldia O, Densneux N. 2010. Temperature dependent differences in biological traits between two strains of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). J Pest Sci. 83: 447–452. https://doi.org/10.1007/s10340-010-0327-0
  • Prasad RP, Roitberg BD, Henderson DE. 2002. The effect of rearing temperature on parasitism by Trichogramma sibericum Sorokina at ambient temperatures. Biol Control 25: 110–115. https://doi.org/10.1016/S1049-9644(02)00050-6
  • Pratissoli D, Parra JRP. 2000. Fertility life table of Trichogramma pretiosum (Hym., Trichogrammatidae) in eggs of Tuta absoluta and Phthorimaea operculella (Lep., Gelechiidae) at different temperatures. J Appl Entomol. 124: 339–342. https://doi.org/10.1046/j.1439-0418.2000.00477.x
  • Pratissoli D. Bioecologia de Trichogramma pretiosum Riley, 1879, nastracasscrobipalodes absoluta (Mayrick, 1917) e phtrorimaeaoperculella (Zeller, 1879), emtomateirotese de dontorado,Escola superior de agricultura "Luizequeiroz", piravcicaba-sp, 1995.
  • Ratte HT. 1985. Temperature and insect development. In: Hoffmann KH (ed) Environmental physiology and biochemistry of insects. Springer, Berlin. p. 33–66.
  • Reznik SYA, Vaghina NP. 2006. Temperature effects on induction of parasitization by females of Trichogramma principium (Hymenoptera, Trichogrammatidae). Entomol Rev. 86: 133–138. https://doi.org/10.1134/S0013873806020023
  • Russo J, Voegele J. 1982. Influence de la temperature surquatreespeces de Trichogrammes (Hym. Trichogrammatidae) parasite de la pyrale du maıs, Ostrinia nubilalis Hubn. (Lep. Pyralidae). II Reproduction etsurvie Agronomie. 2: 517–524. https://doi.org/10.1051/agro:19820602 https://doi.org/10.1051/agro:19820603
  • Singh SP, Murphy ST, Ballal CR. Augmentative biocontrol in India,(eds. Singh et al), In proceedings of the ICAR-CABI workshop, June 29-July 1, 2000; 2001. p. 1–20.
  • Urra F, Apablaza J. 2005. Threshold temperature and thermal constant for the development of Copitarsiadecolora (Lepidoptera: Noctuidae). CienInvAgr. 3216–23.
  • Zago BH, Pratissoli D, Barras R, Gondin JR. 2006. Biologiaeexigenciastermicas de Trichogramma pratissolii Querino & Zucchi (Hymenoptera: Trichogrammatidae) emhespedeiros alternatives. Neotrop Entomol. 35: 377–381. https://doi.org/10.1590/S1519-566X2006000300013 PMid:18575699
  • Zehnder G, Gurr MG, Kuhne S, Wade RM, Wratten DS, Wyss E. 2007. Arthropod pest management in organic crops. Annu Rev of Entomol. 52: 57–80. https://doi.org/10.1146/annurev.ento.52.110405.091337 PMid:16846384

Abstract Views: 266

PDF Views: 145




  • Temperature Based Differences in Biological Parameters of Some Potential Species/Strains of Trichogramma

Abstract Views: 266  |  PDF Views: 145

Authors

Enakshi Ghosh
Department of Biotechnology, Center for Post Graduate Studies, Jain University, Jayanagar, 9 Bengaluru – 560011, Karnataka, India
Chandish R. Ballal
ICAR- National Bureau of Agricultural Insect Resources, P. Bag No. 2491, H.A Farm post, Bellary Road, Bangalore – 24, India
Abraham Verghese
GPS Institute of Agricultural Management, Bengaluru - 560058, India

Abstract


The effect of temperature on different Trichogramma spp. is an aspect to be understood for planning mass production strategies and further field releases. The key biological parameters of seven different spp./strains of trichogrammatids (viz. Trichogramma japonicum Ashmead, T. cordubensis Vargas and Carbello, T. achaeae Nagaraja and Nagarkatti, four strains of T. chilonis Ishii i.e. lab strain, Nilgiris strain, Kodaikanal strain and a strain acclimatized to constant 15°C) were investigated at five constant temperatures (16, 21, 26, 31 and 36±1°C with 60-70% RH and L: D-12:12). The different test temperatures had a significant impact on the biological parameters of the different species/strains. Based on longevity, parasitism and fecundity attributes, the best temperature to propagate these trichogrammatids was found to be 26°C. Considering the higher parasitism rates and the ability to parasitize and remain fecund at varied temperatures, T. chilonis Nilgiris strain proved to be the best. From the linear model of regression analysis, the upper temperature thresholds ranged from 35 to 46.37°C and the lower temperature thresholds were recorded to range between 9 and 12°C, with T. cordubensis appearing to be least temperature sensitive.

Keywords


Biology, Effect of Temperature, Trichogramma.

References





DOI: https://doi.org/10.18311/jbc%2F2017%2F16338