Open Access Open Access  Restricted Access Subscription Access

Diversity and Antagonistic Potential of Apoplastic Bacteria Against Ralstonia pseudosolanacearum Race 4 Causing Bacterial Wilt of Ginger


Affiliations
1 Division of Crop Protection, ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode - 673012, Kerala, India
 

Bacterial wilt caused by Ralstonia pseudosolanacearum race 4 is a devastating disease of ginger, for which almost all control measures met with limited success. In this study, 150 bacteria isolated from the apoplastic fluid of ginger were screened for antagonism against R. pseudosolanacearum both in vitro and in planta and shortlisted six isolates which were further characterized for biocontrol and plant growth promoting traits. The promising isolates were identified as Bacillus subtilis (IISRGAB 5), B. marisflavi (IISRGAB 43), B. licheniformis (IISRGAB 107), Agrobacterium tumefaciens (IISRGAB24), Micrococcus luteus (IISRGAB 48) and Staphylococcus haemolyticus (IISRGAB 146). Green house evaluation against R. pseudosolanacearum, by seed priming and soil drenching showed that B. licheniformis strain GAP107–MTCC 12725, was able to reduce bacterial wilt incidence up to 67%. Hence, this bacterium was identified as a suitable candidate for developing a potential biocide for the management of bacterial wilt in ginger.


Keywords

Apoplastic Bacillus licheniformis, Bacterial Wilt, Ginger, Ralstonia pseudosolanacearum Race 4.
User
Notifications

  • Achari GA, Ramesh R. 2014. Diversity, biocontrol, and plant growth promoting abilities of xylem residing bacteria from solanaceous crops. Int J Microbiol. 14: doi: 10.1155/2014/296521 https://doi.org/10.1155/2014/296521 PMid:24963298 PMCid:PMC4055287
  • Amaresan N, Jayakumar V, Thajuddin N. 2014. Isolation and characterization of endophytic bacteria associated with chilli (Capsicum annuum) grown in coastal agricultural ecosystem. Indian J Biotechnol.13: 247-255
  • Amaresan N, Jayakumar V, Kumar K, Thajuddin N. 2012. Endophytic bacteria from tomato and chilli, their diversity and antagonistic potential against Ralstonia solanacearum. Arch Phytopathol Plant Prot. 45 (3): 344-355 https://doi.org/10.1080/03235408.2011.5872 73
  • Aneja KR. 2003. Experiments in microbiology, plant pathology and biotechnology. New Age International Publishers
  • Apun K, Jong BC, Salleh MA. 2000. Screening and isolation of a cellulolytic and amylolytic Bacillus from sago pith waste. J Gen Appl Microbiol. 46(5): 263-267 https://doi.org/10.2323/jgam.46.263 PMid:12483578
  • Anthony KJP, Murugan M, Gurunathan S. 2014. Biosynthesis of silver nanoparticles from the culture supernatant of Bacillus marisflavi and their potential antibacterial activity. J Indust Eng Chem. 20(4):1505-1510 https:// doi.org/10.1016/j.jiec.2013.07.039
  • Aravind R, Antony D, Eapen, SJ, Kumar A, Ramana KV, 2009. Isolation and evaluation of endophytic bacteria against plant parasitic nematodes infesting black pepper (Piper nigrum L.). Indian J Nematol. 39(2):211-217.
  • Bacon CW and Hinton DM. 2006. Bacterial endophytes: The endophytic niche, its occupants, and its utility. pp. 155– 194. In: Gnanamanickam SS (Eds.). Plant-Associated Bacteria. Springer; Netherlands.
  • Bacon CW, Hinton DM. 2002. Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control. 23(3): 274-284 https://doi.org/10.1006/bcon.2001.1016
  • Bell CR., Dickie GA, Harvey WLG, Chan JWYF. 1995. Endophytic bacteria in grapevine. Can J Microbiol. 41(1): 46-53. https://doi.org/10.1139/m95-006
  • Barretti PB, de Souza RM, Pozza EA, de Souza JT (2012) Combination of endophytic bacteria and resistant cultivars improves control of Ralstonia wilt of tomato. Australas Plant Pathol. 41(2): 189-195 https://doi.org/10.1007/s13313-011-0107-1
  • Belimov AA, Dodd IC, Safronova VI, Shaposhnikov AI, Azarova TS, Makarova NM, Davies WJ, Tikhonovich, IA. 2015. Rhizobacteria that produce auxins and contain 1 amino cyclopropane 1 carboxylic acid deaminase decrease amino acid concentrations in the rhizosphere and improve growth and yield of well watered and water limited potato (Solanum tuberosum). Ann Appl Biol. 67(1):11-25 https://doi.org/10.1111/aab.12203
  • Cappuccino JC, Sherman N. 1992 Microbiology: A Laboratory Manual. 3rd ed. Benjamin/cummings Pub. Co. pp. New York: 125-179.
  • Cappuccino JG, Sherman N. 2005. Microbiology: A Laboratory Manual. 7th ed. Benjamin Cummings: Pearson Education, Inc. New York
  • Casida Jr LE, Klein DA, Santoro T. 1964. Soil dehydrogenase activity. Soil Sci. 98(6): 371-376 https://doi.org/10.1097/00010694-196412000-00004
  • Cawoy H, Bettiol W, Fickers P, Ongena M. 2011. Bacillusbased biological control of plant diseases. pp. 273-302, In: Stoytcheva M (Ed.). Pesticides in the modern worldpesticides use and management. InTech, Rijeka, Croatia. https://doi.org/10.5772/17184
  • Cheng FY, Burkey KO, Robinson JM, Booker FL. 2007. Leaf extracellular ascorbate in relation to O3 tolerance of two soybean cultivars. Environ Pollut. 150(3):355362. https://doi.org/10.1016/j.envpol.2007.01.022 PMid:17442469
  • Clarke PH, Cowan ST. 1952. Biochemical methods for bacteriology. Microbiology 6(1-2): 187-197 https://doi.org/10.1099/00221287-6-1-2-187 PMid:14927866
  • Collins CH, Lyne PM, Grange JM. 1995. Collins and Lyne’s Microbiological Methods, 7th ed. ButterworthHeinemann, UK, pp. 114
  • De Boer SH, Copeman RJ, 1974. Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot disease. Can J Plant Sci. 54: 115- 122 https:// doi.org/10.4141/cjps74-019
  • Dong Z, Canny MJ, McCully ME, Roboredo MR, Cabadilla CF, Ortega E. Rodes R. 1994. A nitrogen-fixing endophyte of sugarcane stems (a new role for the apoplast). Plant Physiol. 105(4): 1139-1147 https://doi.org/10.1104/ pp.105.4.1139 PMid:12232271 PMCid:PMC159442
  • Engelbrecht MC. 1994. Modification of a semi-selective medium for the isolation and quantification of Pseudomonas solanacearum. ACIAR Bacterial Wilt Newsletter. 10: 3-5
  • Feng H, Li Y, Liu Q. 2013. Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. Afr J Microbiol Res. 7(15): 1311-1318 https://doi.org/10.5897/AJMR12.375
  • Gagne S, Richard C, Rousseau H, Antoun H. 1987. Xylemresiding bacteria in alfalfa ischolar_mains. Can J Microbiol. 33(11): 996-1000. https://doi.org/10.1139/m87-175
  • Gardner JM, Feldman AW, Zablotowicz RM. 1982. Identity and behavior of xylem-residing bacteria in rough lemon ischolar_mains of Florida citrus trees. App Environ Microbiol. 43(6): 1335-1342.
  • Gaur AC. 1990. Physiological functions of phosphate solubilising microorganisms. pp. 16-72. In: Gaur AC (Ed.). Phosphate solubilising microorganisms as biofertilizers. Omega Scientific publishers. New Delhi,
  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW. 1997. Bacterial endophytes in agricultural crops. Can J Microbiol. 43(10): 895-914 https://doi.org/10.1139/ m97-131
  • Hallmann J, Kloepper JW, Rodriguez-Kabana R. 1997a. Application of the Scholander pressure bomb to studies on endophytic bacteria of plants. Can J Microbiol. 43(5): 411-416. https://doi.org/10.1139/m97-058
  • Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK. 2014. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4(2): 197-204 https:// doi.org/10.1007/s13205-013-0143-3 PMid:28324450 PMCid:PMC3964247
  • Ji X, Lu G, Gai Y, Zheng C, Mu Z. 2008. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain. FEMS Microbiol Ecol. 65(3): 565-573 https://doi.org/10.1111/j.15746941.2008.00543.x PMid:18631174
  • Kim JH, Lee SH, Kim CS, Lim EK, Choi KH, Kong HG, Kim DW, Lee SW, Moon BJ. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J Microbiol Biotechnol. 17(3): 438-444.
  • Kim YC, Leveau J, Gardener BBM, Pierson EA, Pierson LS, Ryu CM. 2011. The multifactorial basis for plant health promotion by plant-associated bacteria. Appl Environ Microbiol. 77(5): 1548-1555 https://doi.org/10.1128/ AEM.01867-10 PMid:21216911 PMCid:PMC3067257
  • Klement Z. 1965. Method of obtaining fluid from the intercellular spaces of foliage and the fluid’s merit as substrate for phytobacterials pathogens. Phytopathology 55: 1033-1034.
  • Kloepper JW, Reddy MS, Rodríguez-Kabana R, Kenney DS, Kokalis-Burelle N, Martinez-Ochoa N, Vavrina CS. 2004. Application for rhizobacteria in transplant production and yield enhancement. Acta Hortic. 217230 https://doi.org/10.17660/ActaHortic.2004.631.28
  • Kong HG, Kim JC, Choi GJ, Lee KY, Kim HJ, Hwang EC, Moon BJ, Lee SW. 2010. Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. The Plant Pathol J. 26(2):170177 https://doi.org/10.5423/PPJ.2010.26.2.170
  • Kumar A, Hayward AC. 2005. Bacterial diseases of ginger and their control. pp 341-366. In: Ravindran PN, Babu KN (Eds.). Monograph on Ginger. CRC Press, Boca Raton, FL, USA,
  • Lalande R, Bissonnette N, Coutlée D, Antoun H. 1989. Identification of rhizobacteria from maize and determination of their plant-growth promoting potential. Plant Soil 115(1): 7-11. https://doi.org/10.1007/BF02220688
  • Lee JP, Lee SW, Kim CS, Son JH, Song JH, Lee KW, Kim HJ, Jung SJ, Moon BJ. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control tomato gray mold caused by Botrytis cinerea. Biol Control. 37(3): 329-337 https://doi.org/10.1016/j.biocontrol.2006.01.001
  • Lemessa F, Zeller W. 2007. Screening rhizobacteria for biological control of Ralstonia solanacearum in Ethiopia. Biol Control. 42(3): 336-344 https://doi.org/10.1016/j.biocontrol.2007.05.014
  • Lemos ML, Toranzo AE, Barja JL. 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb Ecol. 11(2): 149-163 https://doi.org/10.1007/BF02010487 PMid:24221303
  • Lorck H. 1948. Production of hydrocyanic acid by bacteria. Plant Physiol. 1(2): 142-146 https://doi.org/10.1111/j.1399-3054.1948.tb07118.x
  • Luwe MW, Takahama U, Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant physiol. 101(3):969-976. https://doi.org/10.1104/pp.101.3.969 PMid:12231749 PMCid:PMC158714
  • Lyons T , Ollerenshaw JH , Barnes JD. 1999. Impacts of ozone on Plantago major: apoplastic and symplastic antioxidant status. New Phytol. 141(2): 253-263 https:// doi.org/10.1046/j.1469-8137.1999.00338.x
  • Maketon M, Apisitsantikul J, Siriraweekul C. 2008. Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Braz J Microbiol. 39(2): 296-300 https://doi.org/10.1590/S1517-83822008000200018 PMid:24031219 PMCid:PMC3768408
  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM. 2007. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol. 73(22): 7259-7267 https://doi.org/10.1128/AEM.01222-07 PMid:17905875 PMCid:PMC2168197
  • Misaghi IJ, Donndelinger,CR. 1990. Endophytic bacteria in symptom-free cotton plants. Phytopathology 80(9): 808-811. https://doi.org/10.1094/Phyto-80-808
  • Nabti EH, Mokrane N, Ghoul M, Manyani H, Dary M, Megias MG. 2013. Isolation and characterization of two halophilic Bacillus (Bacillus licheniformis and Bacillus sp.) with antifungal activity. J Ecol Health Environ. 1: 13-17 https://doi.org/10.12785/jehe/010102
  • Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K. 2012. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. Plant Cell Physiol. 53(9):1659-1668. https://doi.org/10.1093/pcp/pcs102 PMid:22813544
  • Prameela TP. 2016. Studies on biovar specific diagnostics for Ralstonia solanacearum Yabuuchi (Smith) infecting ginger (Zingiber officinale Rosc.) and evaluation of apoplastic microbes for biocontrol. Ph.D. Thesis. Submitted to Mangalore University, Karnataka.
  • Ramesh R, Joshi AA. Ghanekar MP. 2009. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol. 25(1): 47-55 https://doi.org/10.1007/s11274-008-9859-3
  • Roberts PD, Momol MT, Ritchie L, Olson SM, Jones JB, Balogh B. 2008. Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolarS-methyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato. Crop Prot. 27(12): 1519-1526 https://doi.org/10.1016/j.cropro.2008.06.007
  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paul WP, Bais HP. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol. 3(2): 130-138 https://doi.org/10.4161/cib.3.2.10584 PMid:20585504 PMCid:PMC2889968
  • Saddler GS. 2005. Management of bacterial wilt disease. pp. 121-132. In: Allen C, Prior P, Hayward AC (Eds.). Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press.
  • Sarwar M, Kremer RJ. 1995. Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol. 20(5): 282-285. https://doi.org/10.1111/ j.1472-765X.1995.tb00446.x
  • Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 160(1): 47-56. https://doi.org/10.1016/00032697(87)90612-9
  • Upreti R, Thomas P. 2015. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol. 6: 255. https:// doi.org/10.3389/fmicb.2015.00255 PMid:25926818 PMCid:PMC4396348
  • Van Peer R, Niemann GJ, Schippers B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81(7): 728-734. https://doi.org/10.1094/Phyto-81-728
  • Vermelho AB, Meirelles MNL, Lopes A, Petinate SDG, Chaia AA, Branquinha MH. 1996. Detection of extracellular proteases from microorganisms on agar plates. Mem Inst Oswaldo Cruz. 91(6): 755-760. https://doi.org/10.1590/ S0074-02761996000600020 PMid:9283660
  • Wang XB, Luo YM, Liu WX, Li ZG. 2011. Identification, antimicrobial activity and field control efficacy of an endophytic bacteria strain against peanut bacterial wilt. Chin J Biol Control 27(1): 88-92.
  • Luwe MW, Takahama U, Heber U. 1993. Role of ascorbate in detoxifying ozone in the apoplast of spinach (Spinacia oleracea L.) leaves. Plant physiol. 101(3):969-976. https://doi.org/10.1104/pp.101.3.969 PMid:12231749 PMCid:PMC158714
  • Lyons T , Ollerenshaw JH , Barnes JD. 1999. Impacts of ozone on Plantago major: apoplastic and symplastic antioxidant status. New Phytol. 141(2): 253-263 https:// doi.org/10.1046/j.1469-8137.1999.00338.x
  • Maketon M, Apisitsantikul J, Siriraweekul C. 2008. Greenhouse evaluation of Bacillus subtilis AP-01 and Trichoderma harzianum AP-001 in controlling tobacco diseases. Braz J Microbiol. 39(2): 296-300 https://doi.org/10.1590/S1517-83822008000200018 PMid:24031219 PMCid:PMC3768408
  • Mendes R, Pizzirani-Kleiner AA, Araujo WL, Raaijmakers JM. 2007. Diversity of cultivated endophytic bacteria from sugarcane: genetic and biochemical characterization of Burkholderia cepacia complex isolates. Appl Environ Microbiol. 73(22): 7259-7267 https://doi.org/10.1128/AEM.01222-07 PMid:17905875 PMCid:PMC2168197
  • Misaghi IJ, Donndelinger,CR. 1990. Endophytic bacteria in symptom-free cotton plants. Phytopathology 80(9): 808-811. https://doi.org/10.1094/Phyto-80-808
  • Nabti EH, Mokrane N, Ghoul M, Manyani H, Dary M, Megias MG. 2013. Isolation and characterization of two halophilic Bacillus (Bacillus licheniformis and Bacillus sp.) with antifungal activity. J Ecol Health Environ. 1: 13-17 https://doi.org/10.12785/jehe/010102
  • Nouchi I, Hayashi K, Hiradate S, Ishikawa S, Fukuoka M, Chen CP, Kobayashi K. 2012. Overcoming the difficulties in collecting apoplastic fluid from rice leaves by the infiltration-centrifugation method. Plant Cell Physiol. 53(9):1659-1668. https://doi.org/10.1093/pcp/pcs102 PMid:22813544
  • Prameela TP. 2016. Studies on biovar specific diagnostics for Ralstonia solanacearum Yabuuchi (Smith) infecting ginger (Zingiber officinale Rosc.) and evaluation of apoplastic microbes for biocontrol. Ph.D. Thesis. Submitted to Mangalore University, Karnataka.
  • Ramesh R, Joshi AA. Ghanekar MP. 2009. Pseudomonads: major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant (Solanum melongena L.). World J Microbiol Biotechnol. 25(1): 47-55 https://doi.org/10.1007/s11274-008-9859-3
  • Roberts PD, Momol MT, Ritchie L, Olson SM, Jones JB, Balogh B. 2008. Evaluation of spray programs containing famoxadone plus cymoxanil, acibenzolarS-methyl, and Bacillus subtilis compared to copper sprays for management of bacterial spot on tomato. Crop Prot. 27(12): 1519-1526 https://doi.org/10.1016/j.cropro.2008.06.007
  • Rudrappa T, Biedrzycki ML, Kunjeti SG, Donofrio NM, Czymmek KJ, Paul WP, Bais HP. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun Integr Biol. 3(2): 130-138 https://doi.org/10.4161/cib.3.2.10584 PMid:20585504 PMCid:PMC2889968
  • Saddler GS. 2005. Management of bacterial wilt disease. pp. 121-132. In: Allen C, Prior P, Hayward AC (Eds.). Bacterial wilt disease and the Ralstonia solanacearum species complex. APS press.
  • Sarwar M, Kremer RJ. 1995. Determination of bacterially derived auxins using a microplate method. Lett Appl Microbiol. 20(5): 282-285. https://doi.org/10.1111/j.1472-765X.1995.tb00446.x
  • Schwyn B, Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 160(1): 47-56. https://doi.org/10.1016/00032697(87)90612-9
  • Upreti R, Thomas P. 2015. Root-associated bacterial endophytes from Ralstonia solanacearum resistant and susceptible tomato cultivars and their pathogen antagonistic effects. Front Microbiol. 6: 255. https:// doi.org/10.3389/fmicb.2015.00255 PMid:25926818 PMCid:PMC4396348
  • Van Peer R, Niemann GJ, Schippers B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81(7): 728-734. https://doi.org/10.1094/Phyto-81-728
  • Vermelho AB, Meirelles MNL, Lopes A, Petinate SDG, Chaia AA, Branquinha MH. 1996. Detection of extracellular proteases from microorganisms on agar plates. Mem Inst Oswaldo Cruz. 91(6): 755-760. https://doi.org/10.1590/ S0074-02761996000600020 PMid:9283660
  • Wang XB, Luo YM, Liu WX, Li ZG. 2011. Identification, antimicrobial activity and field control efficacy of an endophytic bacteria strain against peanut bacterial wilt. Chin J Biol Control 27(1): 88-92.
  • Yamada T, Kawasaki T, Nagata S, Fujiwara A, Usami S, Fujie M. 2007. New bacteriophages that infect the phytopathogen Ralstonia solanacearum. Microbiology. 153 (8): 2630-2639. https://doi.org/10.1099/mic.0.2006/001453-0 PMid:17660427
  • Yoon JH, Kim IG, Kang KH, Oh TK, Park YH. 2003. Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol. 153(8): 2630-2639. https://doi.org/10.1099/ijs.0.02365-0
  • Zinniel DK, Lambrecht P, Harris NB, Feng Z, Kuczmarski D, Higley P, Ishimaru CA, Arunakumari A, Barletta RG, Vidaver AK. 2002. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Appl Environ Microbio. 68(5): 2198-2208. https://doi.org/10.1128/AEM.68.5.21982208.2002 PMid:11976089 PMCid:PMC127535

Abstract Views: 306

PDF Views: 127




  • Diversity and Antagonistic Potential of Apoplastic Bacteria Against Ralstonia pseudosolanacearum Race 4 Causing Bacterial Wilt of Ginger

Abstract Views: 306  |  PDF Views: 127

Authors

T. P. Prameela
Division of Crop Protection, ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode - 673012, Kerala, India
R. Suseela Bhai
Division of Crop Protection, ICAR-Indian Institute of Spices Research, Marikunnu PO, Kozhikode - 673012, Kerala, India

Abstract


Bacterial wilt caused by Ralstonia pseudosolanacearum race 4 is a devastating disease of ginger, for which almost all control measures met with limited success. In this study, 150 bacteria isolated from the apoplastic fluid of ginger were screened for antagonism against R. pseudosolanacearum both in vitro and in planta and shortlisted six isolates which were further characterized for biocontrol and plant growth promoting traits. The promising isolates were identified as Bacillus subtilis (IISRGAB 5), B. marisflavi (IISRGAB 43), B. licheniformis (IISRGAB 107), Agrobacterium tumefaciens (IISRGAB24), Micrococcus luteus (IISRGAB 48) and Staphylococcus haemolyticus (IISRGAB 146). Green house evaluation against R. pseudosolanacearum, by seed priming and soil drenching showed that B. licheniformis strain GAP107–MTCC 12725, was able to reduce bacterial wilt incidence up to 67%. Hence, this bacterium was identified as a suitable candidate for developing a potential biocide for the management of bacterial wilt in ginger.


Keywords


Apoplastic Bacillus licheniformis, Bacterial Wilt, Ginger, Ralstonia pseudosolanacearum Race 4.

References





DOI: https://doi.org/10.18311/jbc%2F2019%2F23733