Open Access
Subscription Access
Open Access
Subscription Access
Asymmetric Volatility and Volatility Spillover: A Study of Major Cryptocurrencies
Subscribe/Renew Journal
Cryptocurrencies have recently emerged as a popular asset class, with investors having high risk appetite and speculative attributes. They are not backed by physical assets, such as commodities or real currencies; they are purely speculative assets having high volatility. Regulatory authorities across the globe have conflicting rules regarding cryptocurrencies. Recent studies on volatility of cryptocurrencies have primarily addressed univariate volatility analysis and volatility spillover between cryptocurrencies and other asset classes, mostly stocks and commodities. This study has three objectives. Firstly, it considers six prominent cryptocurrencies, i.e., Bitcoin, Ethereum, Binance Coin, Cardano, Tether, and Ripple, and examines the nature of asymmetrical volatility in them using EGARCH and TGARCH techniques. Secondly, it examines whether there are volatility spillovers between the cryptocurrencies as well as from one of the most popular global fear indices, i.e., CBOE volatility index, using dynamic conditional correlation (DCC). Thirdly, it further measures the total and directional volatility spillover among the cryptocurrencies using the Diebold-Yilmaz index. This study has found that Ethereum and Ripple may be used to construct a portfolio. There exists long-term volatility spillover among all the cryptocurrencies; however, there is no short-term spillover of volatility. Volatility of Binance Coin, Cardano, and Ripple influence and are influenced the most by volatilities of other cryptocurrencies.
Keywords
Cryptocurrency, Volatility Spillover, EGARCH, TGARCH, Dynamic Conditional Correlation (DCC), Diebold-Yilmaz Index
Subscription
Login to verify subscription
User
Font Size
Information
- Abakah, E. J. A., Gil-Alana, L. A., Madigu, G., & Romero-Rojo, F. (2020). Volatility persistence in cryptocurrency markets under structural breaks. International Review of Economics & Finance, 69, 680-691. doi:https://doi.org/10.1016/j.iref.2020.06.035
- Ali, Ghulam. (2013). EGARCH, GJR-GARCH, TGARCH, AVGARCH, NGARCH, IGARCH and APARCH Models for Pathogens at Marine Recreational Sites. Journal of Statistical and Econometric Methods, 2(3), 57-73.
- Allen, D., McAleer, M., Powell, R., & Singh, A. (2017). Volatility spillover and multivariate volatility impulse response analysis of GFC news events. Proceedings of the 2017 International Conference on Economics, Finance and Statistics (ICEFS 2017). doi:https://doi.org/10.2991/icefs-17.2017.9
- Baur, D. G., & Dimpfl, T. (2018). Asymmetric volatility in cryptocurrencies. Economics Letters, 173, 148-151. doi:https//doi.org/10.1016/j.econlet.2018.10.008
- Bigmore, R. (2018). A decade of cryptocurrency: From bitcoin to mining chip. Retrieved July 16, 2021, from https://www.telegraph.co.uk/technology/digital-money/the-history-of-cryptocurrency/
- Bouri, E., Das, M., Gupta, R., & Roubaud, D. (2018). Spillovers between Bitcoin and other assets during bear and bull markets. Applied Economics, 50(55), 5935-5949. doi:https//doi.org/10.1080/00036846.2018.1488075
- Carnero, M. A., Pena, D., & Ruiz, E. (2004). Persistence of Kurtosis in GARCH and stochastic volatility models. doi:10.1093/JJFINEC/NBH012. Retrieved September 3, 2021, from https://core.ac.uk/download/pdf/29429136.pdf
- Dangi, V. (2020). Volatility dynamics of cryptocurrencies’ returns: An econometric study. IUP Journal of Applied Finance, 26(1), 5-30.
- Diebold, F., & Yilmaz, K. (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. Economic Journal, 119(534), 158-171.
- Diebold, F., & Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.
- Engle, Robert F., & Ng, Victor K. (1993). Measuring and testing the impact of news on volatility. The Journal of Finance, 48(5), 1749-1778.
- ERTUĞRUL, H. M. (2019). Kripto Paralarin Volatilite Dinamiklerinin İncelenmesi: Garch Modelleri Üzerine Bir Uygulama. Journal of Management & Economics Research, 17(4), 59-71. doi:https//doi.org/10.11611/yead.555713
- Fasanya, I. O., Oyewole, O., & Odudu, T. (2021). Returns and volatility spillovers among cryptocurrency portfolios. International Journal of Managerial Finance, 17(2), 327-341. doi:https//doi.org/10.1108/IJMF-02-2019-0074
- Field, A. (2000). Discovering statistics using SPSS for windows. London-Thousand Oaks-New Delhi: Sage publications.
- Field, A. (2009). Discovering statistics using SPSS. London: SAGE.
- Ftiti, Z., Louhichi, W., & Ben Ameur, H. (2021). Cryptocurrency volatility forecasting: What can we learn from the first wave of the COVID-19 outbreak? Annals of Operations Research, 1-26. doi:https://doi.org/10.1007/s10479-021-04116-x
- George, D., & Mallery, M. (2010). SPSS for windows step by step: A simple guide and reference, 17.0 update (10a ed.). Boston: Pearson.
- Gradojevic, N., & Tsiakas, I. (2021). Volatility cascades in cryptocurrency trading. Journal of Empirical Finance, 62, 252-265. doi:https://doi.org/10.1016/j.jempfin.2021.04.005
- Gravetter, F., & Wallnau, L. (2014). Essentials of statistics for the behavioral sciences (8th ed.). Belmont, CA: Wadsworth.
- Hsu, S. H., Sheu, C., & Yoon, J. (2021). Risk spillovers between cryptocurrencies and traditional currencies and gold under different global economic conditions. North American Journal of Economics & Finance, 57(C). doi:https://doi.org/10.1016/j.najef.2021.101443
- Huang, J.-Z., Huang, Z. J., & Xu, L. (2021). Sequential Learning of cryptocurrency volatility dynamics: Evidence based on a stochastic volatility model with jumps in returns and volatility. Quarterly Journal of Finance, 11(2), 1-37. doi:https://doi.org/10.1142/S2010139221500105
- Jimoh, S. O., & Benjamin, O. O. (2020). The effect of cryptocurrency returns volatility on stock prices and exchange rate returns volatility in Nigeria. Acta Universitatis Danubius: Oeconomica, 16(3), 200-213.
- Katsiampa, P., Corbet, S., & Lucey, B. (2019). High frequency volatility co-movements in cryptocurrency markets. Journal of International Financial Markets, Institutions & Money, 62, 35-52. doi:https://doi.org/10.1016/j.intfin.2019.05.003
- Kayral, İ. E. (2020). En Yüksek Piyasa Değerine Sahip Üç Kripto Paranin Volatilitelerinin Tahmin Edilmesi. Journal of Financial Researches & Studies / Finansal Arastirmalar ve Calismalar Dergisi, 11(22), 152-168. doi:https://doi.org/10.14784/marufacd.688447
- Koutmos, D. (2018). Return and volatility spillovers among cryptocurrencies. Economics Letters, 173, 122-127. doi:https://doi.org/10.1016/j.econlet.2018.10.004
- Lobato, I., & Velasco, C. (2004). A simple test of normality for time series. Econometric Theory, 20, 671-689. doi:10.1017/S026646664204030
- Lundbergh, S., & Terasvirta, T. (2002). Evaluating GARCH models. Journal of Econometrics, 110, 417-435.
- Ma, F., Liang, C., Ma, Y., & Wahab, M. I. M. (2020). Cryptocurrency volatility forecasting: A Markov regime-switching MIDAS approach. Journal of Forecasting, 39(8), 1277-1290. doi:https://doi.org/10.1002/for.2691
- Malladi, R. K., & Dheeriya, P. L. (2021). Time series analysis of cryptocurrency returns and volatilities. Journal of Economics & Finance, 45(1), 75-94. doi:https://doi.org/10.1007/s12197-020-09526-4
- Palamalai, S., & Maity, B. (2019). Return and volatility spillover effects in leading cryptocurrencies. Global Economy Journal, 19(3), 1-20. doi:https://doi.org/10.1142/S2194565919500179
- Sensoy, A., Silva, T. C., Corbet, S., & Tabak, B. M. (2021). High-frequency return and volatility spillovers among cryptocurrencies. Applied Economics, 53(37), 4310-4328. doi:https://doi.org/10.1080/00036846.2021.1899119
- Siu, T. K. (2021). The risks of cryptocurrencies with long memory in volatility, non-normality and behavioural insights. Applied Economics, 53(17), 1991-2014. doi:https://doi.org/10.1080/00036846.2020.1854669
- Trentina, K., & Schmidt, J. (2021, August). Top 10 cryptocurrencies. Retrieved August 20, 2021, from https://forbes.com/advisors/investing/top-10-cryptocurrencies
- Trochim, W. M., & Donnelly, J. P. (2006). The research methods knowledge base (3rd ed.). Cincinnati, OH: Atomic Dog.
- Urbina, J. (2013). Financial spillovers across countries: Measuring shock transmissions. Munich Personal RePEc Archive Paper No. 75756. Retrieved from https://mpra.ub.uni-muenchen.de/75756/
- Xiao, X. & Huang, J. (2018). Dynamic connectedness of international crude oil prices: The Diebold-Yilmaz approach. Sustainability, 10, 3298. doi:https://doi.org/10.3390/su10093298
- Yaya, O. S., Ogbonna, A. E., Mudida, R., & Abu, N. (2021). Market efficiency and volatility persistence of cryptocurrency during pre- and post-crash periods of Bitcoin: Evidence based on fractional integration. International Journal of Finance & Economics, 26(1), 1318-1335. doi:https://doi.org/10.1002/ijfe.1851
- Yi, S., Xu, Z., & Wang, G.-J. (2018). Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency? International Review of Financial Analysis, 60, 98-114. doi:https://doi.org/10.1016/j.irfa.2018.08.012
- Yin, L., Nie, J., & Han, L. (2021). Understanding cryptocurrency volatility: The role of oil market shocks. International Review of Economics & Finance, 72, 233-253. doi:https://doi.org/10.1016/j.iref.2020.11.013
Abstract Views: 172
PDF Views: 0