Open Access Open Access  Restricted Access Subscription Access

Kinetics and in vitro Release Studies of Drug Loaded Silver Nanoparticles from Indigofera tinctoria Extract


Affiliations
1 Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
2 Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS) CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
 

Silver nanoparticles (AgNP’s) have been successfully fabricated via bio-reduction of Indigofera tinctoria plant extract as the reducing and capping agent. The effects of pH and temperature on the formation of the AgNP’s have been studied. The synthesized AgNP’s have been characterized using UV-Visible spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Zeta potential analysis, Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). Antimicrobial activities of the synthesized AgNP’s have been tested against both bacterial and fungal strains by agar well diffusion method. The biomass-capped AgNP’s imparted antimicrobial activity by inhibiting the growth of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Aspergillus niger and Penicillium chrysogenum. The antioxidant activities of the synthesized AgNP’s exhibit low IC50 value of ~55.72 μg/mL. Studies on drug loading and kinetics of drug release reveal that I. tinctoria AgNP’s follow the zero-order kinetics at pH 4.6 and pH 7.4. The gradient value of 0.568 (pH 4.6) and 0.6 (pH 7.4) falls between 0.42 < n < 0.85 when fitted into Peppa’s plot indicating that the drug release follow an anomalous transport or non-Fickian diffusion transport, indicating that the diffusion is time dependent.

Keywords

Biological activity, Drug release, Indigofera tinctoria, Kinetics, Silver nanoparticles
User
Notifications
Font Size

  • Swaminathan C, Asian J Pharm Clin Res, 11 (2018) 136.
  • Asuntha G, Prasannaraju Y & Prasad K, Trop J Pharm Res, 9 (2010) 149.
  • Anusuya N & Manian S, Int J Pharm Pharm Sci, 5 (2013) 142.
  • Srinivasan S, Wankhar W, Rathinasamy S & Rajan R, J Pharm Anal, 6 (2016) 125.
  • Ahluwalia V, Elumalai S, Kumar V, Kumar S & Sangwan R, Microb Pathog, 114 (2018) 402.
  • Netala V R, Bukke S, Domdi L, Soneya S, Reddy S G, Bethu M S, Kotakdi V S, Saritha K V & Tartte V, Artif Cells Nanomed Biotechnol, 46 (2018) 1138.
  • Singh R, Sharma S & Sharma V, J Integr Med, 13 (2015) 269.
  • Srinivasan S, Wankhar W, Rathinasamy S & Rajan R, J Pharm Anal, 16 (2016)125.
  • Ravichandran R & Alwarsamy A, Int J Adv Pharm Res, 3 (2012) 872.
  • Malarvannan L & Devaki T, J Nat Remedies, 3 (2003) 49.
  • Sindhu K K & Mathew M M, J Trop Med Plants, 13 (2012) 1.
  • Singh B, Saxena A, Chandan B, Bhardwaj V, Gupta V, Suri O & Handa S, Phytother Res, 15 (2001) 294.
  • Vijayan R, Joseph S & Mathew B, Artif Cells Nanomed Biotechnol, 46 (2017) 861.
  • Siva P K, Sathish M, Parvathi T, Kamraj M, Bhuvaneswari R & Aurmugam M, J Phytol, 13 (2021) 48.
  • Brand-Williams W, Cuverlier M E & Berset C, Lebensmittel- Wissenschaft Technol, 28 (1995) 25.
  • Perez C, Paul M & Bazerque P, Acta Biol Med Exp, 15 (1990) 113.
  • Madhusudhan A, Reddy G B, Venkatesham M, Veerabhadram G, Kumar D A, Natarajan S, Yang M Y, Hu A & Singh S S, Int J Mol Sci, 15 (2014) 8216.
  • Hadjiioannou T P, Christian G D, Koupparis M A & Macheras P E, VCH publishers Inc., New York, 1 (1993) 345.
  • Bourne D W A, Pharmacokinetics, Modern Pharmaceutics, edited by G S Banker & C T Rhodes, 4th Edn, (Marcel Dekker Inc, New York) 2002, 67.
  • Higuchi T, J Pharm Sci, 52 (1963) 1145.
  • Korsmeyer R W & Peppas N A, J Cont Rel, 1 (1984) 89.
  • Khandel P, Shahi S K, Soni D K, Yadaw R K & Kanwar L, Nano Convergence, 5 (2018) 37.
  • Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J & Fernig D G, Analyst, 139 (2014) 4855.
  • Jana J, Ganguly M & Pal T, RSC Adv, 6 (2016) 86174.
  • Balashanmugam P, Balakumaran M D, Murugan R, Dhanapal K & Kalaichelvan P T, Microbiol Res, 192 (2016) 52.
  • Liu H, Zhang H, Wang J & Wei J, Arab J Chem, 13 (2020) 1011.
  • Mandal S, Natarajan S, Suresh S, Chandrasekar R, Jothi G, Muralidharan C & Mandal A B, Appl Clay Sci, 115 (2015) 17.
  • Veedu K K, Kalarikkal T P, Jayakumar N & Gopalan N K, ACS Omega, 4 (2019) 10176.
  • Nosalova G, Jurecek L, Chatterjee U R, Majee S K, Nosal S & Ray B, Evid Based Complement Alternat Med, (2013) 650134.
  • Riddick T M, Control of colloid stability through zeta potential, (Wynnewood, Pa) Published for Zeta-Meter, Inc., by Livingston Pub. Co., 1 (1968).
  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Deepak V, Pandian S R K, Muniyandi J, Hariharan N & Eom S H, Colloids Surf B Biointerfaces, 74 (2009) 328.
  • Singh H, Du J, Singh P & Yi T H, J Nanostructure Chem, 8 (2018) 359.
  • Orčić D Z, Mimica-Dukić N M, Francišković M M, Petrović S S & Jovin E D, Chem Cent J, 5 (2011) 34.
  • Umashankari J, Inbakandan D, Ajithkumar T T & Balasubramanian T, Aquat Biosyst, 8 (2012) 1.
  • Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Ramirex J T & Yacaman M J, Nanotechnology, 16 (2005) 2346.
  • Ajitha B, Reddy Y A K & Reddy P S, Spectrochim Acta Part A, 121 (2014) 164.
  • Hajipour M J, Fromm K M, Akbar Ashkarran A, de Aberasturi D J, de Larramendi R, Rojo T, Serpooshan V, Parak W J & Mahmoudi M, Trends Biotechnol, 30 (2012) 499.
  • Kawahara K, Tsuruda K, Morishita M & Uchida M, Dent Mater, 16 (2000) 452.
  • Aryal S, Grailer J J, Pilla S, Steeber D A & Gong S, J Mater Chem, 19 (2009) 7879.
  • Varles C G, Dixon D G & Steiner C, J Cont Rel, 34 (1995) 185.

Abstract Views: 115

PDF Views: 79




  • Kinetics and in vitro Release Studies of Drug Loaded Silver Nanoparticles from Indigofera tinctoria Extract

Abstract Views: 115  |  PDF Views: 79

Authors

Yasmin Khambhaty
Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
Suryakiran Bondada
Microbiology Division, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India
Sujata Mandal
Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS) CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India

Abstract


Silver nanoparticles (AgNP’s) have been successfully fabricated via bio-reduction of Indigofera tinctoria plant extract as the reducing and capping agent. The effects of pH and temperature on the formation of the AgNP’s have been studied. The synthesized AgNP’s have been characterized using UV-Visible spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, Zeta potential analysis, Scanning Electron Microscope (SEM) and Atomic Force Microscopy (AFM). Antimicrobial activities of the synthesized AgNP’s have been tested against both bacterial and fungal strains by agar well diffusion method. The biomass-capped AgNP’s imparted antimicrobial activity by inhibiting the growth of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Aspergillus niger and Penicillium chrysogenum. The antioxidant activities of the synthesized AgNP’s exhibit low IC50 value of ~55.72 μg/mL. Studies on drug loading and kinetics of drug release reveal that I. tinctoria AgNP’s follow the zero-order kinetics at pH 4.6 and pH 7.4. The gradient value of 0.568 (pH 4.6) and 0.6 (pH 7.4) falls between 0.42 < n < 0.85 when fitted into Peppa’s plot indicating that the drug release follow an anomalous transport or non-Fickian diffusion transport, indicating that the diffusion is time dependent.

Keywords


Biological activity, Drug release, Indigofera tinctoria, Kinetics, Silver nanoparticles

References