Open Access Open Access  Restricted Access Subscription Access

Methyl Orange Adsorption by Modified Montmorillonite Nanomaterials: Characterization, Kinetic, Isotherms and Thermodynamic Studies


Affiliations
1 Faculty of Science and Technology, Djilali Bounaama University of Khemis-Miliana, Khemis-Miliana, Algeria
2 Department of Chemical Engineering, Faculty of Chemistry, Castilla-La Mancha University, Ciudad Real, Spain
 

Clays intercalated with cetyltrimethylammonium bromide (CTAB-Mt) and hydroxyl aluminium polycation have been prepared and analysed by X-ray fluorescence spectrometry, X-ray diffraction, fourier transform infrared spectroscopy, nitrogen adsorption-desorption at 77 K and thermal gravimetric analysis. The adsorption capacities of modified montmorillonite nanomaterials to remove methyl orange (MO) from aqueous solutions have been studied as a function of contact time, solution pH, adsorbent dosage and initial MO concentration at room temperature. The maximum removal efficiency of MO has been found in acidic medium, with 60 min equilibrium time and 1 g/L adsorbent dosage. The adsorption kinetics and isotherms have been well fitted by pseudo-second order and Langmuir models. The montmorillonites intercalated with both cetyltrimethylammonium bromide and hydroxyl aluminium polycation (CTAB-Al-Mt) have shown a high affinity for MO molecules. Thermodynamic results have indicated an exothermic, spontaneous and physical adsorption process. The characterization and adsorption performance of CTAB-Mt and CTAB-Al-Mt toward MO has also been compared with that of the hydroxyl-aluminium pillared montmorillonite (OH-Al-Mt) and purified montmorillonite (Na-Mt).

Keywords

Adsorption, Isotherm Models, Kinetic Models, Methyl Orange, Montmorillonite Nanomaterials.
User
Notifications
Font Size

  • Sejie F P & Nadiye-Tabbiruka M S, Phys Chem, 6 (2016) 39.
  • Klett C, Barry A, Balti I, Lelli P, Schoenstein F & Jouini N, J Environ Chem Eng, 2 (2014) 914.
  • Destaillats H, Colussi A J, Joseph J M & Hoffmann M R, J Phys Chem, 104 (2000) 8930.
  • Yang Y, Zhang H, Lee S, Kim D, Hwang W & Wang, Z L, Nano Lett, 13 (2013) 803.
  • Darwish A A A, Rashad M & AL-Aoh H A, Dyes Pigm, 160 (2019) 563.
  • Habiba U, Siddique T A, Lee J J L, Joo T C, Ang B C & Afifi A M, Carbohydr Polym, 191 (2018) 79.
  • Chakraborty A & Acharya H, Colloids Interf Sci Commun, 24 (2018) 35.
  • Khan M I, Shanableh A, Elboughdiri N, Lashari M H, Manzoor S, Shahida S, Farooq N, Bouazzi Y, Rejeb S, Elleuch Z, Kriaa K & Rehman A U, ACS Omega, 7 (2022) 26788.
  • Ghani U, Jiang W, Hina K, Idrees A & Iqbal M, Front Environ Sci, 10 (2022) 1.
  • Qiao C L, Xu Y M, Yin Y, Xu Y X, Xiao Y H & Liu C Q, Water Sci Technol, 85 (2022) 2208.
  • Danwittayakul S, Jaisai M, Koottatep T & Dutta J, Ind Eng Chem Res, 52 (2013) 13629.
  • Chamjangali M A, Bagherian G, Javid A, Boroumand S & Farzaneh N, Spectrochim Acta A: Mol Biomol Spectrosc, 150 (2015) 230.
  • Trandafilovic L V, Jovanovic D J, Zhang X, Ptasinska S & Dramicanin M D, Appl Catal B: Environ, 203 (2017) 740.
  • Hongzhu Ma, Bo W & Xiaoyan L, J Hazard Mater, 149 (2007) 492.
  • Ren H P, Tian S P, Zhu M, Zhao Y Z, Li K X, Ma Q, Ding S Y, Gao J & Miao Z, Appl Clay Sci, 151 (2018) 29.
  • Ren X, Zhang Z, Luo H, Hu B, Dang Z, Yang C & Li L, Appl Clay Sci, 97 (2014) 17.
  • Wang G, Hua Y, Su X, Komarneni S, Ma S & Wang Y, Appl Clay Sci, 124 (2016) 111.
  • Khalaf H, Bouras O & Perrichon V, Microporous Mater, 8 (1997) 141.
  • Kiransan Y, Cheshmehsoltani R D, Hassani A, Karaca S & Khataee A, J Taiwan Inst Chem Eng, 45 (2014) 2565.
  • Rezala H, Douba H, Boukhatem H & Romero A, J Chem Soc Pak, 42 (2020) 550.
  • Liu B, Wang X, Yang B & Sun R, Mater Chem Phys, 130 (2011) 1220.
  • Zhu V, Wang T, Ge F, Chen W & You Z, J Colloıd Interf Sci, 335 (2009) 77.
  • Zhu R, Chen Q, Zhou Q, Xi Y, Zhu J & He H, Appl Clay Sci, 123 (2016) 239.
  • Rathnayake S I, Xi Y, Frost R L & Ayoko G A, J Colloıd Interf Sci, 470 (2016) 183.
  • Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J & Sıemıenıewska T, Pure Appl Chem, 57 (1985) 603.
  • Fatimah Is & Huda T, Appl Clay Sci, 74 (2013) 115.
  • Chen D, Chen J, Luan X, Ji H & Xia Z, Chem Eng J, 171 (2011) 1150.
  • Gashti M P & Eslami S, Superlattices Microstruct, 51 (2012) 135.
  • Qin Z, Yuan P, Yang S, Liu D, He H & Zhu J, Appl Clay Sci, 99 (2014) 229.
  • Mishra A K, Allauddin S, Narayan R, Aminabhavi T M & Raju K V S N, Ceram Int, 38 (2012) 929.
  • Rathnayake S I, Xi Y, Frost R L & Ayoko G A, J Colloıd Interf Sci, 459 (2015) 17.
  • Ma L, Zhu J, He H, Tao Q, Zhu R, Shen, W & Theng B K G, Appl Clay Sci, 101 (2014) 327.
  • Liang Y & Li H, J Mol Liq, 227 (2017) 139.
  • Cabrera-Lafaurie W A, Román F R & Hernández-Maldonado A J, J Colloid Interf Sci, 386 (2012) 381.
  • Kooli F, Micropor Mesopor Mat, 184 (2014) 184.
  • Yu W H, Ren Q Q, Tong D S, Zhou C H & Wang H, Appl Clay Sci, 97 (2014) 222.
  • Xi Y, Frost R L & He H J, Colloıd Interf Sci, 305 (2007) 150.
  • Lagergren S, Handlingar, 24 (1898) 1.
  • Ho Y S & McKay G, Process Saf Environ Prot, 76 (1998) 183.
  • Ho Y S & McKay G, Process Biochem, 34 (1999) 451.
  • Kausar A, Iqbal M, Javed A, Aftab K, Nazli Z H, Bhatti H N & Nouren S, J Mol Liq, 256 (2018) 395.
  • Gomaa H, Abd El-Monaem E M, Eltaweil A S, Abdelazeem S & Omer A M, Scientific Reports, 12 (2022) 15499.
  • Fana X, Zhao B, Maa J, Wanga N, Gaoa W, Gaoa Y, Zhaoa Yuke & Liub L, Water Sci Technol, 86 (2022) 1135.
  • Haddadian Z, Shavand M A, Abidin Z Z, Fakhru’l-Razi A & Shah Ismail M H, Chem Sci Trans, 2 (2013) 900.
  • Abo El Naga A O, Shaban S A & El Kady F Y A, J Taiwan Inst Chem Eng, 93 (2018) 363.
  • Langmuir I, J Am Chem Soc, 38 (1916) 2221.
  • Freundlich H M F, Chemie, 57 (1906) 385.
  • Temkin M J & Pyzhev V, Acta Phys Chem USSR, 12 (1940) 217.
  • Amin M T, Alazba A A & Shafiq M, Sustainability, 7 (2015) 15302.
  • Mobarak M, Selim A Q, Mohamed E A & Seliem M K, J Mol Struct, 259 (2018) 384.
  • Zayed A M, Abdel Wahed M S M, Mohamed E A & Sillanpää M, Appl Clay Sci, 166 (2018) 49.
  • Kushwaha A K, Gupta N & Chattopadhyaya M C, J Saudi Chem Soc, 18 (2014) 200.
  • Fan S, Wang Y, Wang Z, Tang J & Li X, J Environ Chem Eng, 5 (2017) 601.

Abstract Views: 69

PDF Views: 65




  • Methyl Orange Adsorption by Modified Montmorillonite Nanomaterials: Characterization, Kinetic, Isotherms and Thermodynamic Studies

Abstract Views: 69  |  PDF Views: 65

Authors

Houria Rezala
Faculty of Science and Technology, Djilali Bounaama University of Khemis-Miliana, Khemis-Miliana, Algeria
Horiya Boukhatem
Faculty of Science and Technology, Djilali Bounaama University of Khemis-Miliana, Khemis-Miliana, Algeria
Noreddine Boudechiche
Faculty of Science and Technology, Djilali Bounaama University of Khemis-Miliana, Khemis-Miliana, Algeria
Amaya Romero
Department of Chemical Engineering, Faculty of Chemistry, Castilla-La Mancha University, Ciudad Real, Spain

Abstract


Clays intercalated with cetyltrimethylammonium bromide (CTAB-Mt) and hydroxyl aluminium polycation have been prepared and analysed by X-ray fluorescence spectrometry, X-ray diffraction, fourier transform infrared spectroscopy, nitrogen adsorption-desorption at 77 K and thermal gravimetric analysis. The adsorption capacities of modified montmorillonite nanomaterials to remove methyl orange (MO) from aqueous solutions have been studied as a function of contact time, solution pH, adsorbent dosage and initial MO concentration at room temperature. The maximum removal efficiency of MO has been found in acidic medium, with 60 min equilibrium time and 1 g/L adsorbent dosage. The adsorption kinetics and isotherms have been well fitted by pseudo-second order and Langmuir models. The montmorillonites intercalated with both cetyltrimethylammonium bromide and hydroxyl aluminium polycation (CTAB-Al-Mt) have shown a high affinity for MO molecules. Thermodynamic results have indicated an exothermic, spontaneous and physical adsorption process. The characterization and adsorption performance of CTAB-Mt and CTAB-Al-Mt toward MO has also been compared with that of the hydroxyl-aluminium pillared montmorillonite (OH-Al-Mt) and purified montmorillonite (Na-Mt).

Keywords


Adsorption, Isotherm Models, Kinetic Models, Methyl Orange, Montmorillonite Nanomaterials.

References