Open Access Open Access  Restricted Access Subscription Access

Triazole-Based C3-Symmetric Multivalent Dendritic Architecture as Cu(II) Ion Sensor


Affiliations
1 Department of Chemistry, University of Delhi, Delhi 110 007, India
 

C3-symmetric triazole-based multivalent dendritic architecture having uniform aromatic core and branches has been employed to study its metal binding ability towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions. The dendritic architecture is found to exhibit a high affinity for Cu(II) ions and formed a solid complex with a blue shift in the dd-band of Cu(II) chloride. X-band EPR spectra at low temperature has supported a distorted tetrahedral geometry for the complex. The complex has displayed quasi-reversible redox waves in cyclic voltammetry (CV). DFT calculations have shown that Cu(II) has a high affinity for the dendritic structure, leading to high complexation energies of the order of -25 eV, showing that the complexation reactions are highly exothermic. The binding constant (K) for the Cu(II) complex has been determined using a fluorescence titration method.

Keywords

Binding Constant, C3-Symmetric, Cu-Complex, Dendritic Architecture, Metal Sensor.
User
Notifications
Font Size

  • Mammen M, Choi S K & Whitesides G M, Angew Chem Int Ed, 37 (1998) 2754.
  • Smeijers A F, Pieterse K, Hilbers P A J & Markvoort A J, Macromolecules, 52 (2019) 2778.
  • Fasting C, Schalley C A, Weber M, Seitz O, Hecht S, Koksch B, Dernedde J, Graf C, Knapp E W & Haag R, Angew Chem Int Ed, 51 (2012) 10472.
  • Lotfi B, Tarlani A, Akbari-Moghaddam P, Mirza- Aghayan M, Peyghan A A, Muzart J & Zadmard R, Bio Bioelectron, 90 (2017) 290.
  • Xianyu Y, Dong Y, Zhang Z, Wang Z, Yu W, Wang Z & Chen Y, Bio Bioelectron, 155 (2020) 112106.
  • Viltres H, Lopez Y C, Leyva C, Gupta N K, Naranjo A G, Acevedo–Pena P, Sanchez-Diaz A, Bae J & Kim K S, J Molecular Liquids, 334 (2021) 116017.
  • Luan L, Tang B, Liu Y, Xu W, Liu Y, Wang A & Niu Y, Langmuir, 38 (2022) 698.
  • Wang Q, Zhu S, Xi C & Zhang F, Frontiers Chem, 10 (2022) Please give me pages number.
  • Barman S R, Nain A, Jain S, Punjabi N, Mukherji S & Satija J, J Mater Chem B, 6 (2018) 2368.
  • Wang J, Li B, Qiu L, Qiao X & Yang H, J Biological Eng, 16 (2022) 1.
  • Arseneault M, Wafer C & Morin J F, Molecules, 20 (2015) 9263.
  • Sumerlin B S & Vogt A P, Macromolecules, 43 (2010) 1.
  • Niu L, Song N, Wang X & Ding S, Macromol Rapid Commun, 29 (2022) 2200375.
  • Tiwari V K, Mishra B B, Mishra K B, Mishra N, Singh A S & Chen X, Chem Rev, 116 (2016) 3086.
  • Wang L, Kiemle D J, Boyle C J, Connors E L & Gitsov I, Macromolecules, 47 (2014) 2199.
  • Urankar D, Pinter B, Pevec A, De Proft F, Turel I & Košmrlj J, Inorg Chem, 49 (2010) 4820.
  • Crowley J D & Gavey E L, Dalt Trans, 39 (2010) 4035.
  • Kilpin K J, Gavey E L, McAdam C J, Anderson C B, Lind S J, Keep C C, Gordon K C & Crowley J D, Inorg Chem, 50 (2011) 6334.
  • Diallo A K, Ornelas C, Salmon L, Ruiz Aranzaes J & Astruc D, Angew Chem Int Ed, 46 (2007) 8644.
  • Ornelas C, Ruiz Aranzaes J, Cloutet E, Alves S & Astruc D, Angew Chem Int Ed, 46 (2007) 872.
  • Shiri P & Amani A M, Monatshefte für Chemie-Chem Monthly, 152 (2021) 367.
  • Thomas B, Yan K C, Hu X L, Donnier-Marechal M, Chen G R, He X P & Vidal S, Chem Soc Rev, 49 (2020) 593.
  • Kumar S, Ma S, Mohan B, Li S & Ren P, Inorg Chem, 61 (2022) 14778.
  • Jarowski P D, Wu Y L, Schweizer W B & Diederich F, Org Lett, 10 (2008) 3347.
  • Brunel D & Dumur F, New J Chem, 44 (2020) 3546.
  • Mittal A, Prasad S, Mishra P K, Sharma S K & Parshad B, Mater Adv, 2 (2021) 3459.
  • Parshad B, Prasad S, Bhatia S, Mittal A, Pan Y, Mishra P K, Sharma S K & Fruk L, RSC Adv, 10 (2020) 42098.
  • Parshad B, Yadav P, Kerkhoff Y, Mittal A, Achazi K, Haag R & Sharma S K, New J Chem, 43 (2019) 11984.
  • Mishra B, Barik A, Priyadarshini K N & Mohan H, J Chem Sci, 117 (2005) 641.
  • Delley B, J Chem Phys, 92 (1990) 508.
  • Delley B, Phys Review B, 66 (2002) 155125.
  • Perdew J P, Burke K & Ernzerhof M, Phys Rev Lett, 77 (1996) 3865.
  • Weinert M & Davenport J W, Phys Review B, 45 (1992) 13709.
  • Andzelm J, King-Smith R D & Fitzgerald G, Chem Phys Lett, 335 (2001) 321.
  • Baker J, Kessi A & Delley B, J Chem Phys, 105 (1996) 192.
  • Mayer I, Int J Quant Chem, 29 (1986) 477.
  • Hirshfeld F L, Theor Chem Acta, 44 (1977) 129.
  • Kumar A, Mohan B, Modi K, Din M A & Kumar S, J Molecular Struct, 1268 (2022) 133609.
  • Diallo M S, Christie S, Swaminathan P, Johnson J H & Goddard W A, Environ Sci Technol, 39 (2005) 1366.
  • Camci-Unal G & Pohl N L B, Carbohydr Polym, 81 (2010) 8.
  • Shortreed M, Kopelman R, Kuhn M & Hoyland B, Anal Chem, 68 (1996) 1414.
  • Caballero A, Martinez R, Lloveras V, Ratera I, Vidal-Gancedo J, Wurst K, Tarraga A, Molina P & Veciana J, J Am Chem Soc, 127 (2005) 15666.
  • Lin W, Yuan L, Long L, Guo C & Feng J, Adv Funct Mater, 18 (2008) 2366.
  • Zhou L, Russell D H, Zhao M & Crooks R M, Macromolecules, 34 (2001) 3567.
  • Knecht M R, Garcia-Martinez J C & Crooks R M, Chem Mater, 18 (2006) 5039.
  • Bakshi R, Rossi M, Caruso F & Mathur P, Inorg Chem Acta, 376 (2011) 175.
  • Babu M S S, Reddy K H & Krishna P G, Polyhedron, 26 (2007) 572.

Abstract Views: 73

PDF Views: 45




  • Triazole-Based C3-Symmetric Multivalent Dendritic Architecture as Cu(II) Ion Sensor

Abstract Views: 73  |  PDF Views: 45

Authors

Preeti Yadav
Department of Chemistry, University of Delhi, Delhi 110 007, India
Badri Parshad
Department of Chemistry, University of Delhi, Delhi 110 007, India
Krishna
Department of Chemistry, University of Delhi, Delhi 110 007, India
Antara Sharma
Department of Chemistry, University of Delhi, Delhi 110 007, India
Rita Kakkar
Department of Chemistry, University of Delhi, Delhi 110 007, India
Sunil K. Sharma
Department of Chemistry, University of Delhi, Delhi 110 007, India

Abstract


C3-symmetric triazole-based multivalent dendritic architecture having uniform aromatic core and branches has been employed to study its metal binding ability towards Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions. The dendritic architecture is found to exhibit a high affinity for Cu(II) ions and formed a solid complex with a blue shift in the dd-band of Cu(II) chloride. X-band EPR spectra at low temperature has supported a distorted tetrahedral geometry for the complex. The complex has displayed quasi-reversible redox waves in cyclic voltammetry (CV). DFT calculations have shown that Cu(II) has a high affinity for the dendritic structure, leading to high complexation energies of the order of -25 eV, showing that the complexation reactions are highly exothermic. The binding constant (K) for the Cu(II) complex has been determined using a fluorescence titration method.

Keywords


Binding Constant, C3-Symmetric, Cu-Complex, Dendritic Architecture, Metal Sensor.

References