The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In recent years search for efficient material to detoxify the environment has received great interest. Nanomaterials made up of transition metal oxide proved to be promising material for future owing to their extraordinary physical, chemical, and electronic properties. Among the different metal oxides, zinc oxide (ZnO) with wide band, good photostability, easy to prepare and low cost make it a viable source to remediate the environment. Addition of plasmonic structure to ZnO inhibits the charge carrier recombination and aids to absorb visible light. In this work, Ag/ZnO nanocomposites have been prepared using thermal method and characterized using X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy and energy dispersive analysis. Photocatalytic studies under sunlight to degrade methylene blue dye indicates the ability of synthesized material that can be utilized to treat dye effluents. The synthesized material has also shown good antibacterial activity.

Keywords

Dye degradation, Environment remediation, Photocatalysis, Plasmonic catalyst
User
Notifications
Font Size