Open Access
Subscription Access
Anti-tuberculosis Potential of Bruceine: An in Silico Approach
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. The bacterial enzyme pantothenate synthetase (PS) catalyzes the synthesis of pantothenate, a precursor of coenzyme A. Hence, targeting PS is a potential mechanism in the development of anti-tuberculosis drugs. Bruceine, a highly oxygenated natural quassinoid molecule, is isolated from plants of the Simaroubaceae family. The anti-tuberculosis potential of eleven bruceine (A, B, C, D, E, G, H, I, J, K and L) has been investigated by in silico approach. The molecular docking (AutodockVina) and drug-likeness (Lipinski’s rule of five) analyses identified bruceine D as a potential inhibitor. Further, it has shown six hydrogen bond interactions with the key amino acids residues of the target protein, Tyr82, His135, Lys160 and Asp161. The ring-A and -D has contributed two hydrogen bonds, while one each from ring-C and -E. The results reveal that bruceine D possesses druglikeness property and binding energy of -9.3 kcal/mol. The binding score similar to pantoyl adenylate suggests chemical modifications to enhance the protein inhibition potency. Bruceine D has a great potential to inhibit PS and could contribute to the tuberculosis drug discovery process.
Keywords
Bruceine, Docking, Pantothenate synthetase, Quassinoids, Tuberculosis
User
Font Size
Information
- Zheng R, Dam T K, Brewer C F & Blanchard J S, Biochemistry, 43 (2004) 7171.
- Tuck K L, Saldanha S A, Birch L M, Smith G & Abell C, Org Biomol Chem, 4 (2006) 3598.
- Murugan E, Akshata C R, Yogaraj V, Sudhandiran G & Babu D, Ceram Int, 48 (2022) 16000.
- Yang C T M & Billones J B, Philipp J Sci, 141 (2012) 187.
- Suresh A, Srinivasarao S, Khetmalis Y M, Nizalapur S, Sankaranarayanan M & Sekhar K V G C, RSC Adv, 10 (2020) 37098.
- Murugan E, Priya A R J, Raman K J, Kalpana K, Akshata C R, Kumar S S & Govindaraju S, J Nanosci Nanotechnol, 19 (2019) 7596.
- Murugan E, Govindaraju S & Santhoshkumar S, Electrochim Acta, 392 (2021) 138973.
- Siva A & Murugan E, Synthesis, 17 (2005) 2927.
- Murugan E & Akshata C R, Colloids Surf B Biointerfaces, 219 (2022) 112822.
- Murugan E & Shanmugam P, J Nanosci Nanotechnol, 16 (2016) 426.
- Murugan E Akshata C R, Ilangovan R & Mohan M, Colloids Surf B Biointerfaces, 218 (2022) 112767.
- Murugan E & Gopinath P, J Mol CatalA Chem, 294 (2008) 68.
- Chumkaew P, Pechwang J & Srisawat T, J Nat Med, 71 (2017) 570.
- Noorshahida A, Wui T & Yan C, J Ethnopharmacol, 124 (2009) 586.
- Bawm S, Matsuura H, Elkhateeb A, Nabeta K, Nonaka N & Oku Y, Vet Parasitol, 158 (2008) 288.
- Murugan E, Rani D P G, Srinivasan K & Muthumary J, Expert Opin Drug Deliv, 10 (2013) 1319
- Muhammad I & Samoylenko V, Expert Opin Drug Discov, 2 (2007) 1065.
- Yogaraj V, Gowtham G, Akshata C R, Manikandan R, Murugan E & Arumugam M, J Drug Deliv Sci Technol, 58 (2020) 101785.
- Murugan E, Rani D P G & Yogaraj V, Colloids Surf B Biointerfaces, 114 (2014) 121.
- Duan Z, Zhang Z, Dong S, Wang Y & Song S, Phytochemistry, 187 (2021) 112769.
- Zhang P, Tao W, Lu C, Fan L, Jiang Q, Yang C, Shang E, Cheng H, Che C, Duan J & Zhao M, Pharmacol Res, 169 (2021) 105658.
- Fan J, Ren D, Wang J, Liu X, Zhang H, Wu M & Yang G, Cell Death Dis, 11 (2020) 126.
- Rajendran V, Shukla R & Shukla H, Biochem J, 475 (2018) 3377.
- Wang S & Eisenberg D, Biochemistry, 45 (2006) 1554.
- Murugan E, Nimita J, Ariraman M, Rajendran S, Kathirvel J, Akshata C R & Kumar K, ACS Omega, 3 (2018) 13685.
- Fukamiya N, Lee K, Muhammad I, Murakami C, Okano M, Harvey I & Pelletier J, Cancer Lett, 220 (2005) 37.
- Zhao M, Laua S T, Zhang X Q, Ye W C, Leung P S, Che C-T & Zhi-Xiu L, Helv Chim Acta, 94 (2011) 2099.
Abstract Views: 152
PDF Views: 99