Open Access Open Access  Restricted Access Subscription Access

Process Parameters Study of Sanitary Landfill Leachate Treatment Using Photo-Fenton-Like Systems


Affiliations
1 Sivas Cumhuriyet University, Engineering Faculty, Department of Environmental Engineering, 58140, Sivas, Turkey
 

In this study, the effects of the combination of classical Fenton (CFP) and modified Fenton (MFP) processes with UV light on the treatment of sanitary landfill leachate have been investigated. Iron (Fe2+ and Fe0) dosage, hydrogen peroxide dosage, reaction time, pH and different UV lamps have been optimized to achieve high COD removal. In addition, zeroth, first and second order kinetic models are applied for all processes under optimum conditions. For CFP and MFP; optimum pH 3, reaction time 30 min, 4 g/kg TS Fe2+ and Fe0 and 5 g/kg TS H2O2 have been determined. The COD removal efficiency is determined as 48.86% for CFP and 59.27% for MFP under optimum conditions. COD removal efficiencies increased in photo Fenton application under UV light. The efficiency is found to increase under UVA light source from 48.86% to 49.17% and from 59.27% to 70.72% in in CFP and MFP, respectively. In the kinetic study, the highest R2 values are obtained in the CFP/UV process, while CFP and MFP are found to fit the 0th order kinetic model. In this study, it has been concluded that Fenton and photo Fenton applications are effective in reducing the COD values of landfill leachate.

Keywords

Advanced Oxidation Process, Fenton, Landfill Leachate, Photo-Fenton.
User
Notifications
Font Size

  • Renou S, Givaudan J G, Poulain S, Dirassouyan F & Moulin P, J Hazard Mater,150 (2008) 468.
  • Christensen T H, Kjeldsen P, Bjerg P L, Jensen D L, Christensen J B, Baun A, Albrechtsen H J & Heron G, Appl Geochem, 16 (2001) 659.
  • Scott J, Beydoun D, Amal R, Low G & Cattle J, Crit Rev Environ Sci Technol, 35 (2005) 239.
  • Deng Y & Englehardt J D, Water Res, 40 (2006) 3683.
  • Lau I W C, Wang P, Chiu S S T & Fang H H P, J Environ Sci,14 (2002) 388.
  • Wang Z P, Zhang Z, Lin Y J, Deng N S, Tao T & Zhuo K, J Hazard Mater, 95 (2002) 153.
  • Lopez A, Pagano M, Volpe A & Di Pinto A C, Chemosphere, 54 (2004) 1000.
  • Zhang H, Choi H J, Canazo P & Huang C P, J Hazard Mater, 161 (2008) 1306.
  • Rodriguez J, Castrillon L, Maranon E, Sastre H & Fernandez E, Water Res, 38 (2004) 3297.
  • Cho S P, Hong S C & Hong S, Appl Cata B: Environ, 39 (2002) 125.
  • Teel A L & Watts R J, J Hazard Mater, 94 (2002) 179.
  • Wang F, Smith D W & El-Din M G, J Environ Eng Sci, 2 (2003) 413.
  • Fenton H J H, J Chem Soc, 65 (1984) 899.
  • Papadopoulos A E, Fatta D & Loizidou M, J Hazard Mater,146 (2007) 558.
  • Pignatello J J, Oliveros E & MacKay A, Crit Rev Environ Sci Technol, 36 (2006) 1.
  • Bremner D H, Burgess A E, Houllemare D & Namkung K C, Appl Catal B: Environ, 63 (2006) 15.
  • Faust B C & Hoigne J, Atmos Environ, 24 (1990) 79.
  • Silva T F, Fonseca A, Saraiva I, Boaventura R A & Vilar V J, Chem Eng J, 283 (2016) 76.
  • Welter J B, Soares E V, Rotta E H & Seibert D, J Environ Chem Eng, 6 (2018) 1390.
  • Smaoui Y, Chaabouni M, Sayadi S & Bouzid J, Desalin Water Treat, 257 (2016) 14488.
  • Kamaruddin M A, Abdullah M M A, Yusoff M S, Alrozi R & Neculai O, Mater Sci Eng Conf Ser, 209 (2017) 12083.
  • Tatsi A A, Zouboulis A I, Matis K A & Samaras P,Chemosphere, 53 (2003) 737.
  • Lim P E, Lim S P, Seng C E & Noor A M, Chem Eng J, 159 (2010) 123.
  • Qureshi T I, Kim H & Kim Y, Chin J Chem Eng, 10 (2002) 44.
  • Sruthi T, Gandhimathi R, Ramesh S T & Nidheesh P V,Chemosphere, 210 (2018) 38.
  • Smol M, Wlodarczyk-Makuła M, Mielczarek K, Bohdziewicz J & Wloka D, Polycycl Aromat Comp, 36 (2016) 20.
  • Shah T M, Ramaswami S, Behrendt J & Otterpohl R, J Water Process Eng, 19 (2017) 126.
  • Ushikoshi K, Kobayashi T, Uematsu K, Toji A, Kojima A & Matsumoto K, Desalination, 150 (2002) 121.
  • Trebouet D, Schlumpf J P, Jaouen P & Quemeneur F, Water Res, 35 (2001) 2935.
  • Klein K, Kivi A, Dulova N, Zekker I, Molder E, Tenno T, Trapido M & Tenno T, Clean Technol Environ Policy, 19 (2017) 541.
  • Huang D, Hu C, Zeng G, Cheng M, Xu P, Gong X, Wang R & Xue W, Sci Total Environ, 574 (2017) 1599.
  • Primo O, Rivero M J & Ortiz I, J Hazard Mater, 153 (2008) 834.
  • Trapido M, Tenno T, Goi A, Dulova N, Kattel E, Klauson D, Klein K, Tenno T & Viisimaa M, J Water Process Eng, 16 (2017) 277.
  • Kitis M, Adams C D & Daigger G T, Water Res, 33 (1999) 2561.
  • Lakshmikanthan P & Sivakumar Babu G L, Waste Manag Res, 35 (2017) 285.
  • Wang W, Jin Z H, Li T L, Zhang H & Gao S, Chemosphere, 65 (2006) 1396.
  • APHA: Standard methods for the examination of water and wastewater. Stand. Methods. ISBN 9780875532356. 2012.
  • Lau I W C, Wang P & Fang H H P, J Environ Eng, 127 (2001) 666.
  • Pala A & Erden G, Environ Eng Sci, 21 (2004) 549.
  • Lin S H & Lo C C, Water Res, 31 (1997) 2050.
  • Zhang H, Zhang D & Zhou J, J Hazard Mater, 135 (2006) 106.
  • Sahinkaya S, Kalıpcı E & Aras S, Process Saf Environ Prot, 93 (2015) 274.
  • Yıldız S & Cömert A, Int J Environ Health Res, 30 (2020) 89.
  • Sreeja P H & Sosamony K J, Procedia Technol, 24 (2016) 217.
  • Özdemir C, Tezcan H, Sahinkaya S & Kalipci E, Clean Soil Air Water, 38 (2010) 1152.
  • Kang Y W & Hwang K Y,Water Res, 34 (2000) 2786.
  • Hsueh C L, Huang Y H, Wang C C & Chen C Y, Chemosphere, 58 (2005) 1409.
  • Kim S M, Geissen S U & Vogelpohl A, Water Sci Technol, 35 (1997) 239.
  • Singh S K & Tang W Z, Waste Manag, 33 (2013) 81.
  • Gürtekin E & Şekerdağ N, Pamukkale University J Eng Sci, 14 (2008)229.
  • Olabi A & Yıldız S, Korean J Chem Eng, 38 (2021) 1660.
  • Olabi A & Yıldız S, Environ Sci Pollut Res, 28 (2021) 52565.
  • Zhang H, Choi H J & Huang C P, J Hazard Mater, 125 (2005) 166.
  • Sedlak D L & Andren AW, Environ Sci Technol, 25 (1991) 777.
  • Kim S & Vogelpohl A, Chem Eng Technol, 21 (1998) 187.
  • Gallard H, De Laat J & Legube B, New J Chem, 22 (1998) 263.
  • Tang W Z & Huang C P, Environ Technol, 17 (1996) 1371.
  • Pignatello J J, Environ Sci Technol, 26 (1992) 944.
  • Yonar T, Advances in treating textile effluent. In Tech Open, Rijeka. (2011) 1.
  • Giannakis S, Liu S, Carratalà A, Rtimi S, Talebi Amiri M, Bensimon M & Pulgarin C, J Hazar Mater, 339 (2017) 223.
  • Yıldız S & Olabi A, Chem Eng Technol, 44 (2021) 95.

Abstract Views: 69

PDF Views: 67




  • Process Parameters Study of Sanitary Landfill Leachate Treatment Using Photo-Fenton-Like Systems

Abstract Views: 69  |  PDF Views: 67

Authors

Sayiter Yildiz
Sivas Cumhuriyet University, Engineering Faculty, Department of Environmental Engineering, 58140, Sivas, Turkey
Büşra Kuzu
Sivas Cumhuriyet University, Engineering Faculty, Department of Environmental Engineering, 58140, Sivas, Turkey

Abstract


In this study, the effects of the combination of classical Fenton (CFP) and modified Fenton (MFP) processes with UV light on the treatment of sanitary landfill leachate have been investigated. Iron (Fe2+ and Fe0) dosage, hydrogen peroxide dosage, reaction time, pH and different UV lamps have been optimized to achieve high COD removal. In addition, zeroth, first and second order kinetic models are applied for all processes under optimum conditions. For CFP and MFP; optimum pH 3, reaction time 30 min, 4 g/kg TS Fe2+ and Fe0 and 5 g/kg TS H2O2 have been determined. The COD removal efficiency is determined as 48.86% for CFP and 59.27% for MFP under optimum conditions. COD removal efficiencies increased in photo Fenton application under UV light. The efficiency is found to increase under UVA light source from 48.86% to 49.17% and from 59.27% to 70.72% in in CFP and MFP, respectively. In the kinetic study, the highest R2 values are obtained in the CFP/UV process, while CFP and MFP are found to fit the 0th order kinetic model. In this study, it has been concluded that Fenton and photo Fenton applications are effective in reducing the COD values of landfill leachate.

Keywords


Advanced Oxidation Process, Fenton, Landfill Leachate, Photo-Fenton.

References