Open Access Open Access  Restricted Access Subscription Access

Development of Enhanced 3D Flower Like Gd Doped NiO (GNO) Based LPG Gas Sensor


Affiliations
1 Department of Physics, SNS College of Technology, Coimbatore 641 035, Tamil Nadu, India
2 Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore 641 022, Tamil Nadu, India
 

The Liquefied Petroleum Gas (LPG) sensing properties of pure NiO and Gd doped NiO nanoparticles (Gd - 1%, 3%, and 5%) have been prepared by polyol method and student. The prepared nanoparticles have been characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Ultraviolet-visible spectroscopy, X-ray Photoelectron spectroscopy to study the structural, morphological, optical properties and electronic state of the prepared nanoparticles. XRD reveals that NiO nanoparticles have average crystallite size of about 12 - 26 nm and 3D flower like morphology with 2 - 3 μm size was recorded and TEM images reveals the presence of quasi spherical particles with nanosheets of thickness about 20 - 30 nm range. Optical absorption is found to be in UV region and bandgap energy in the range 3 - 3.6 eV. XPS confirms the presence Ni2+, Ni3+ ions, Gd3+ ions and presence of two oxygen species lattice oxygen and adsorbed oxygen. LPG sensing properties have been studied in detail for both pure NiO and GNO nanoparticles (1%, 3%, 5% Gd doped NiO) and it demonstrate that doped Gd enhance the sensitivity response LPG gas at operating temperature range 160°C to 260°C.

Keywords

Gadolinium, LPG Gas Sensor, NiO, Rare Earth.
User
Notifications
Font Size

  • Aishwary K, Nirmala R & Navamathavan R, Sens Inter, 2 (2021) 100091.
  • Singh A, Sikarwar S & Yadav B C, Mater Res Express, 8 (2021) 045013.
  • Kabure A A, Shirke B S, Mane S R, Garadkar K M, Sargar B M & Pakhare K S, Appl Phys A, 127 (2021) 711.
  • He Y, Sh X, Chen K & Yang X, J Chen Nanomaterials, 10 (2020) 727.
  • Gopi K K, Parne S, Pothukanuri N, Kathirvelu V, Gandi S & Joshi D, Sens Actuat A: Phys, 341 (2022) 113578.
  • Chaisitsak S, Sensors, 11 (2011) 7127.
  • Latyshev V M, Berestok T O, Opanasyuk A S, Kornyushchenko A S & Perekrestov V I, Solid State Sci, 67 (2017) 109.
  • Mirzaei A, Hashemi B & Janghorban K, Mater Sci: Mater Electron, 27 (2016) 3109.
  • Mokoena T P, Swart H C & Motaung D E, J Alloys Comp, 805 (2019) 267.
  • Zhang H, Chen W G, Li Y Q, Jin L F, Cui F & Song Z H, Front Chem, 6 (2018) 472.
  • Nie C, Zeng W & Li Y, J Mater Sci: Mater Electron, 30 (2019) 1794.
  • Wang J, Yang P & Wei X, Nanoscale Res Lett, 10 (2015) 119.
  • Wanga F, Li H, Yuana Z, Suna Y, Changa F, Denga H, Xiea L & Lic H, RSC Adv, 6 (2016) 79343.
  • Umar A, Ibrahim A A, Nakate U T, Albargi H, Alsaiari M A, Ahmed F, Alharthi F A, Alghamdi A A & Zaqri N A, Chem Phy Lett, 763 (2021)138204.
  • Hou L, Zhang C, Li L, Du C, Li X, Kang X F & Chen W, Talanta, 188 (2018) 41.
  • Tan J, Dun M, Li L & Huang X, Mater Res Express, 5 (2018) 045036.
  • Zhou T, Zhang T, Deng J, Zhang R, Lou Z & Wang L, Sen Actu B: Chem, 242 (2017) 369.
  • Hashem M, Saion E, Al-Hada N M, Kamari M H, Shaari A H, Talib Z A, Paiman S B & Kamarudeen M A, Res Phy, 6 (2016) 1024.
  • Cao S, Peng L, Han T, Liu B, Zhu D, Zhao C, Xu J, Tang Y, Wang J & He S, Phys E: Low-dimen Sys Nanostruc, 118 (2020) 113655.
  • Nguyen K, Hoa N D, Hung C M, Le D T T, Duy N V & Hieu N V, RSC Adv, 8 (2018) 19449.
  • Cuong N D, Tran T D, Nguyen Q T, Hai H V M, Hoa T T, Quang D T, Wantana K & Tran P D, R Soc Open Sci, 8 (2021) 202352.
  • Atul A K, Srivastava S K, Gupta A K & Srivastava N, Braz J Phys, 52 (2022) 2.
  • Brewster D A, Bian Y & Knowles K E, Chem Mater, 32 (2020) 2004.
  • Du Y, Wang W, Li X, Zhao J, Ma J, Liu Y & Lu G, Mater Lett, 68 (2012) 168.
  • Niasari M S, Mir N & Davar F, Polyhedron, 28 (2009) 1111.
  • Gao H, Wei D, Lin P, Liu C, Sun P, Shimanoe K, Yamazoe N & Lu G, Sen Actu B: Chem, 253 (2017) 1152.
  • Yang M, Lu J, Wang X, Zhang H, Chen F, Sun J, Yang J, Sun Y & Lu G, Sen Actu B: Chem, 313 (2020) 127965.
  • Bartolomé J, Taeño M, Casado R M, Maestre D & Cremades A, App Surf Sci, 579 (2022) 152134.
  • Gupta P, Kumar K, Pandey N K, Yadav B C & Saeed S H, Appl Phys A, 127 (2021) 289.
  • Gupta P, Pandey N K, Kumar K, Yadav B C, Sen Actu A: Phys, 319 (2021) 112484.
  • Gupta P, Kumar K, Saeed S H, Pandey N K, Verma V, Singh P & Yadav B C, J Mater Res, 37 (2022) 369.
  • Dash D & Sahu D, IOP Conf. Series: Mater Sci Eng, 1219 (2022) 012037.

Abstract Views: 75

PDF Views: 60




  • Development of Enhanced 3D Flower Like Gd Doped NiO (GNO) Based LPG Gas Sensor

Abstract Views: 75  |  PDF Views: 60

Authors

Sengottaiyan
Department of Physics, SNS College of Technology, Coimbatore 641 035, Tamil Nadu, India
Moorthi Pichumani
Department of Nanoscience and Technology, Sri Ramakrishna Engineering College, Coimbatore 641 022, Tamil Nadu, India

Abstract


The Liquefied Petroleum Gas (LPG) sensing properties of pure NiO and Gd doped NiO nanoparticles (Gd - 1%, 3%, and 5%) have been prepared by polyol method and student. The prepared nanoparticles have been characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Ultraviolet-visible spectroscopy, X-ray Photoelectron spectroscopy to study the structural, morphological, optical properties and electronic state of the prepared nanoparticles. XRD reveals that NiO nanoparticles have average crystallite size of about 12 - 26 nm and 3D flower like morphology with 2 - 3 μm size was recorded and TEM images reveals the presence of quasi spherical particles with nanosheets of thickness about 20 - 30 nm range. Optical absorption is found to be in UV region and bandgap energy in the range 3 - 3.6 eV. XPS confirms the presence Ni2+, Ni3+ ions, Gd3+ ions and presence of two oxygen species lattice oxygen and adsorbed oxygen. LPG sensing properties have been studied in detail for both pure NiO and GNO nanoparticles (1%, 3%, 5% Gd doped NiO) and it demonstrate that doped Gd enhance the sensitivity response LPG gas at operating temperature range 160°C to 260°C.

Keywords


Gadolinium, LPG Gas Sensor, NiO, Rare Earth.

References