Open Access Open Access  Restricted Access Subscription Access

Study of the Thermal Behaviour of a Derivative Based on a Zirconium Agent (Modified Montmorillonite) and Determination of the Physical Characteristics


Affiliations
1 Département de chimie-physique, Faculté de chimie, Université des Sciences et de la Technologie d’Oran, M. Boudiaf, BP 1505 El M’naouar, 31000 Oran, Algeria
2 Laboratoire de Chimie des Polymères (LCP), Faculté des sciences exactes et appliquées, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouar 31000, Oran, Algeria
 

In this research, untreated Algerian maghnite has been used to develop two types of modified clays: the first one is a homo-ionic sodium clay (Na-Mag) which is a support to develop a montmorillonite by insertion of zirconium hydroxyl cations. The different series of techniques, including thermogravimetric analysis (TGA), differential thermal analysis (DTA), dynamic light scattering (DLS), and zeta potential (ζ), have been used to define the physical characteristics of the clays by studying their particle size distribution as well as the thermal profile. In addition, the pillar-shaped montmorillonite (Maghnite) exhibit a negative charge even when its pH reach 2.8. This large negative surface charge of montmorillonite suggests optimal removal of organic molecule particles present in the aqueous medium. The results obtained by Fourier transform infrared (FT-IR) analysis show that the bands characterizing the presence of intercalating agents are visible. Thermography of the zirconium pillar species shows an improvement in the thermal stability of the silicate structure with two well differentiated zones. Adsorbed organic cations result in a reduction of the surface load, that is, a decrease of its negativity, as well as a cancellation of the charge.

Keywords

Dynamic Light Scattering (DLS), Maghnite, Pillared Clays, Silicate Structure, Zeta-Potential (ζ).
User
Notifications
Font Size

  • Megherbi R, Mrah L & Marref M, Iran Polym J, 31 (2022) 223.
  • Khiati Z & Mrah L I, J Chem Techn, 29 (2022) 117. 3 Mrah L, Polym Polym Compos, 30 (2022) 09673911221080302.
  • Rathore B S, Chauhan N P S, Rawal M K, Rawal M K , Ameta S C & Ameta R, Polym Bull, 77 (2020) 4833.
  • Figueras F, Catal Rev Sci Eng, 30 (1988) 457.
  • Jozefaciuk G & Bowanko G, Clays Clay Minerals, 50 (2002) 771.
  • Clearfield A & Vaughan P A, Acta Crystallogr, 9 (1956) 555.
  • Cazotti J C, Salvato R C, Alves G M, Moreira J C & Santos A M, Polym Bull, 76 (2019) 6305.
  • Mrah L, Marref M & Megherbi R, J Polym Eng, 42 (2022) 57.
  • Jeldres M, Robles P, Toledo P G, Saldaña M, Quezada L & Jeldres R I, Colloids Surfaces A: Physicochem Eng Asp, 612 (2021) 126015.
  • Noel A, Mirbel D, Cloutet E, Fleury G, Schatz C, Navarro C & Hadziioannou G, Appl Surf Sci, 428 (2018) 870.
  • Sugimoto T, Adachi Y & Kobayashi M, Colloids Surfaces A: Physicochem Eng Asp, 632 (2022) 127795.
  • Mrah L & Meghabar R, J Thermoplast Compos Mater, 35 (2020) 1889.
  • Castellini E, Malferrari D, Bernini F, Brigatti M F, Castro G R, Medici L & Borsari M, Clays Clay Min, 65 (2017) 220.
  • Abhijit P, Sarat Chandra K, Partha M, Shubhamoy C & Rajarshi G, Indian J Chem, 56 (2017) 1317.
  • Lijun R & Chunlan Y, Indian J Chem, 57 (2018) 626.
  • Mrah L & Meghabar R, Polym Bullet, 78 (2021) 3509.
  • Zhuo H, Mei Z, Chen H & Chen S, Polym, 148 (2018) 119.
  • Mrah L & Meghabar R, S N Appl Sci, 2 (2020) 659.
  • Mrah L, Meghabar R & Belbachir M, Bullet Chem React Eng Catal, 10 (2015) 249.
  • Poonam Y, Shobhana S, Suman K, Seema & Mamta R, Indian J Chem, 60 ( 2021) 1539.
  • Vergnes B, Polym Process, 34 (2019) 482.
  • Duman O, Polat T G, Diker C Ö & Tunç S, Int J Biol Macromol, 160 (2020) 823.
  • Kundu D & Ganguli D, J Mater Sci Lett, 5 (1986) 293.
  • Mnasri S, Hamdi N, Frini-Srasra N & Srasra E, Arab J Chem, 10 (2017) 1175.
  • Salerno P & Mendioroz S, Appl Clay Sci, 22 (2002) 115.
  • Ladjal N, Zidelkheir B & Terchi S, J Therm Anal Calorim, 134 (2018) 881.
  • Zhang S, Liu Q, Gao F, Ma R, Wu Z & Teppen B J, Appl Clay Sci, 158 (2018) 204.

Abstract Views: 119

PDF Views: 79




  • Study of the Thermal Behaviour of a Derivative Based on a Zirconium Agent (Modified Montmorillonite) and Determination of the Physical Characteristics

Abstract Views: 119  |  PDF Views: 79

Authors

Zoulikha Khiati
Département de chimie-physique, Faculté de chimie, Université des Sciences et de la Technologie d’Oran, M. Boudiaf, BP 1505 El M’naouar, 31000 Oran, Algeria
Lahouari Mrah
Laboratoire de Chimie des Polymères (LCP), Faculté des sciences exactes et appliquées, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouar 31000, Oran, Algeria

Abstract


In this research, untreated Algerian maghnite has been used to develop two types of modified clays: the first one is a homo-ionic sodium clay (Na-Mag) which is a support to develop a montmorillonite by insertion of zirconium hydroxyl cations. The different series of techniques, including thermogravimetric analysis (TGA), differential thermal analysis (DTA), dynamic light scattering (DLS), and zeta potential (ζ), have been used to define the physical characteristics of the clays by studying their particle size distribution as well as the thermal profile. In addition, the pillar-shaped montmorillonite (Maghnite) exhibit a negative charge even when its pH reach 2.8. This large negative surface charge of montmorillonite suggests optimal removal of organic molecule particles present in the aqueous medium. The results obtained by Fourier transform infrared (FT-IR) analysis show that the bands characterizing the presence of intercalating agents are visible. Thermography of the zirconium pillar species shows an improvement in the thermal stability of the silicate structure with two well differentiated zones. Adsorbed organic cations result in a reduction of the surface load, that is, a decrease of its negativity, as well as a cancellation of the charge.

Keywords


Dynamic Light Scattering (DLS), Maghnite, Pillared Clays, Silicate Structure, Zeta-Potential (ζ).

References