Open Access Open Access  Restricted Access Subscription Access

Spectral Characterizations, Hirshfeld Surface Analysis and Molecular Docking Studies of New Novel NLO 2-(3,4-Dimethoxyphenyl)-3-Hydroxy-4H-Chromen-4-One


Affiliations
1 PG & Research Department of Physics, Nehru Memorial College, Trichy 621 007, Tamil Nadu, India
 

The molecular structure of the compound, spectroscopic investigations (FT-IR, FT-Raman, and NMR) and the frontier energy level analysis of 2-(3,4-Dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one (DMP3H), have been all examined using density functional theory (DFT) methods. Comparisons are made between predicted DFT geometrical parameters and experimental values and also the same performed between the theoretical vibrational wavenumbers and observed data. Chemical reactivity of DMP3H has been studied using DFT/PBEPBE approach that includes frontier orbital energies, optical characteristics and chemical descriptors. Additionally, the cytotoxic activity of the bioactive ligand has been checked against human cancer cell lines A549 and MCF-7 in vitro by the MTT assay. Hence, the docking and in vitro activity against cancer cell lines display positive results and the present ligand performance appears to be a promising way for anticancer agents with better efficacy.

Keywords

DFT, FT-IR, FT-Raman, MTT, NMR, PBEPBE.
User
Notifications
Font Size

  • Sung H, Ferlay J, Siegel R L, Laversanne M, Soerjomataram I, Jemal A & Bray F, CA Cancer J Clin, 71 (2021) 209.
  • Siegel R L, Miller K D, Fuchs H E & Jemal A, CA Cancer J Clin, 71 (2021) 7.
  • Pucci C, Martinelli C & Ciofani G, Ecancermed Sci, 13 (2019) 961.
  • Dasari S & Tchounwou P B, Eur J Pharmacol, 740 (2014) 364.
  • Wang X, Zhang H & Chen X, Cancer Drug Resist, 2 (2019) 141.
  • Ekalu A & Habila J D, Beni-Suef Univ J Basic Appl Sci, 9 (2020) 1.
  • Pandey K B & Rizvi S I, Oxid Med Cell, 2 (2009) 270.
  • Beckman C H, Physiol Mol Plant Pathol, 57 (2000) 101.
  • Block G, Patterson B & Subar A, Nutr Cancer, 18 (1992) 1.
  • Scalbert A, Johnson I T & Saltmarsh M, Am J Clin Nutr, 81 (2005) 215.
  • Singh M, Kaur M & Silakari O, Eur J Med Chem, 84 (2014) 206,
  • Middleton E, Kandaswami C & Theoharides T C, Pharmacol Rev, 52 (2000) 673.
  • Havsteen B H, Pharmacol Ther, 96 (2002) 67.
  • Masraksa W, Tanasawet S, Hutamekalin P, Wongtawatchai T & Sukketsiri W, Nutr Res Pract, 14 (2020) 127.
  • Mosmann T, J Immunol Methods, 65 (1983) 55.
  • Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma Farkas K O, Foresman J B & Fox D J, Gaussian 09W Program Gaussian, Inc., Wallingford CT, (2016).
  • Dennington R, Keith T & Millam A J, Gauss View, Version 6, Semichem Inc., Shawnee Mission, KS, (2016).
  • Becke A D, J Chem Phys, 109 (1998) 2092.
  • Lee C, Yang W & Parr R G, Phys Rev B, 37 (1988) 785,
  • Govindarajan M, Ganasan K, Periandy S & Mohan S, Spectrochim Acta Part A, 76 (2010) 12.
  • Jamróz M H, Spectrochim Acta Part A, 114 (2013) 220.
  • Pulay P, Fogarasi G, Pongor G, Boggs J E & Vargha A, J Am Chem Soc, 105 (1983) 7037.
  • Rauhut G & Pulay P, J Phys Chem A, 99 (1995) 3093.
  • Mtat D, Touati R, Guerfel T, Walha K & Hassine B B, Crystallogr Rep, 61 (2016) 1064.
  • Runge E & Gross E K, Phys Rev Lett, 52 (1984) 997.
  • Kohn W, Becke A D & Parr R G, J Phys Chem A, 100 (1996) 12974.
  • Parr R G & Pearson R G, J Am Chem Soc, 105 (1983) 7512.
  • Politzer P & Abu-Awwad F, Theor Chem Acc, 99 (1998) 83.
  • Zhai X J, Cheng H R, Long H L, Mao W K, Cao L, Xiao B R & Li R Q, Genet Mol Res, 14 (2015) 5399.
  • Kalsi P S, Spectroscopy of Organic Compounds, sixth ed., New Age International (P) Limited Publishers: New Delhi, (2005).
  • Adant C, Dupuis M & Bredas J L, Int J Quantum Chem, 56 (1995) 497.
  • Parimala K & Manimegalai S, Mater Today Proc, 60 (2022) 1575.
  • Buyukuslu H, Akdogan M, Yildirim G & Parlak C, Spectrochim Acta A, 75 (2010) 1362.
  • Socrates G, Infrared and Raman characteristic group frequencies: tables and charts, John Wiley & Sons, (2004).
  • Parimala K & Manimegalai S, MaterToday Proc, 59 (2022) 636.
  • Gladis A E, Joseph V S & K Parimala, Spectrochim Acta Part A, 136 (2015) 1557.
  • Palafox M A, Rastogi V K, Mittal L, Kiefer W & Mital H P, Int J Quantum Chem, 106 (2006) 1885.
  • Parimala K & Manimegalai S, Indian J Pure Appl Phys, 60 (2022) 662.
  • Varsányi G, Assignments for vibrational spectra of seven hundred benzene derivatives John Wiley & Sons: New York, 1 (1974).
  • Ramachandran G, Muthu S & Renuga S, Spectrochim Acta Part A, 107 (2013) 386.
  • Aihara J I, J Phys Chem A, 103 (1999) 7487.
  • Parimala K & Manimegalai S, Indian J Pure Appl Phys, 60 (2022) 49.
  • Tanaka H & Toy M, J Mol Struct, 1068 (2014) 189.
  • Sheena Mary Y, Shyma Mary Y, Rad A S, Yadav R, Celik I & Sarala S, J Mol Liq, 330 (2021) 115652.
  • McKinnon J J, Spackman M A & Mitchell A S, Acta Crystallogr Sect B, 60 (2004) 627.
  • Costa R A, Pitt P O, Pinheiro M L B, Oliveira K M T, Salome K S, Barison A & Costa E V, Spectrochim Acta Part A, 174 (2017) 94.
  • Lipinski C A, Lombardo F, Dominy B W & Feeney P J, Adv Drug Deliv Rev, 46 (2001) 3.
  • Huey R, Morris G M, Olson A J & Goodsell D S, J Comput Chem, 28 (2007) 1145.
  • Shafique M, Garg M L & Nandel F S, Biophys Chem, 6 (2015) 54.
  • Madej T, Lanczycki C J, Zhang D, Thiessen P A, Geer R C, Marchler-Bauer A & Bryant S H, Nucleic Acids Res, 42 (2014) D297.
  • Park J H, Liu Y, Lemmon M A & Radhakrishnan R, Biochem J, 448 (2012) 417.

Abstract Views: 62

PDF Views: 55




  • Spectral Characterizations, Hirshfeld Surface Analysis and Molecular Docking Studies of New Novel NLO 2-(3,4-Dimethoxyphenyl)-3-Hydroxy-4H-Chromen-4-One

Abstract Views: 62  |  PDF Views: 55

Authors

K Parimala
PG & Research Department of Physics, Nehru Memorial College, Trichy 621 007, Tamil Nadu, India

Abstract


The molecular structure of the compound, spectroscopic investigations (FT-IR, FT-Raman, and NMR) and the frontier energy level analysis of 2-(3,4-Dimethoxyphenyl)-3-hydroxy-4H-chromen-4-one (DMP3H), have been all examined using density functional theory (DFT) methods. Comparisons are made between predicted DFT geometrical parameters and experimental values and also the same performed between the theoretical vibrational wavenumbers and observed data. Chemical reactivity of DMP3H has been studied using DFT/PBEPBE approach that includes frontier orbital energies, optical characteristics and chemical descriptors. Additionally, the cytotoxic activity of the bioactive ligand has been checked against human cancer cell lines A549 and MCF-7 in vitro by the MTT assay. Hence, the docking and in vitro activity against cancer cell lines display positive results and the present ligand performance appears to be a promising way for anticancer agents with better efficacy.

Keywords


DFT, FT-IR, FT-Raman, MTT, NMR, PBEPBE.

References