Open Access Open Access  Restricted Access Subscription Access

Hydrothermal Synthesis of Mesoporous TiO2 Nanoparticles for Enhanced Photocatalytic Degradation of Organic Dye


Affiliations
1 Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh
 

In this work, mesoporous TiO2 nanoparticle photocatalyst has been prepared by hydrothermal method using titanium tetrachloride as precursor. The resulting photocatalysts have been characterized using X-ray diffraction (XRD), nitrogen adsorption-desorption analyses, RAMAN spectroscopy, Transmission Electron Microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The results showed that the synthesized OiT2 was anatase phase and mesoporous with specific surface 133.45 m2/g. The decomposition of methylene blue dye under the influence of ultraviolet light was used to test the photocatalytic performance of the produced TiO2 photocatalyst. The photocatalytic activity of the TiO2 photocatalyst for the breakdown of methylene blue dye was significantly higher than that of the commercial TiO2 P25 used as a reference. Moreover, the prepared photocatalyst was stable and reusable. The larger surface area of hydrothermally produced TiO2 was the reason for this enhanced photocatalytic activity. As a result, it is expected that this approach of photocatalytically active semiconducting nanocatalysts will be used in industry to eliminate undesired organics from the environment.

Keywords

Degradation, Dyes, Hydrothermal Method, Photocatalyst, TO2 Nanoparticles.
User
Notifications
Font Size

  • Lellis B, Fávaro-Polonio C Z, Pamphile J A & Polonio J C, Biotechnol Res Innov, 3 (2019) 275.
  • Garg V K, Kumar R & Gupta R, Dye Pigment, 62 (2004) 1.
  • Hagan E & Poulin J, Herit Sci, 33(2021) 9.
  • Ogugbue C J & Sawidis T, Biotechnol Res Int, 2011 (2011) 1.
  • Chandanshive V, Kadam S, Rane N, Jeon B H, Jadhav J & Govindwar S, Chemosphere, 252 (2020) 126513.
  • Adane T, Adugna A T & Alemayehu E, J Chem, 2021 (2021) 1.
  • Şen S & Demirer G N, Water Res, 37 (2003) 1868.
  • dos Santos A B, Cervantes F J & van Lier J B, Bioresour Technol, 98 (2007) 2369.
  • Ben M H, Houas I, Montassar F, Ghedira K, Barillier D, Mosrati R & Chekir-Ghedira L, Environ Sci Pollut Res, 19 (2012) 2634.
  • dos Santos A B, Cervantes F J & van Lier J B, Bioresour Technol, 98 (2007) 2369.
  • Hassan M M & Carr C M, Chemosphere, 209 (2018) 201.
  • Przystas W, Zablocka-Godlewska E & Grabinska-Sota E, Water Air Soil Pollut, 223 (2012) 1581.
  • Berradi M, Hsissou R, Khudhair M, Assouag M, Cherkaoui O, El Bachiri A & El Harfi A, Heliyon, 5 (2019) e02711.
  • Khatri J, Nidheesh P V, Anantha S T S & Kumar S M, Chem Eng J, 348 (2018) 67.
  • Carneiro P A, Umbuzeiro G A, Oliveira D P & Zanoni M V B, J Hazard Mater, 174 (2010) 694.
  • Ferraz E R A, Umbuzeiro G A, de-Almeida G, Caloto-Oliveira A, Chequer F M D, Zanoni M V B, Dorta D J & Oliveira D P, Environ Toxicol, 26 (2011) 489.
  • Mukhlish M Z B, Islam M A, Rahman M A, Hossain S, Islam M A & Uddin M T, Desalin Water Treat, 230 (2021) 169.
  • Uddin M T, Mukhlish M Z Bin & Patwary M R H, Desalin Water Treat, 212 (2021) 311.
  • Uddin M T, Nicolas Y, Olivier C, Toupance T, Müller M M, Kleebe H J, Rachut K, Ziegler J, Klein A & JaegermannW, J Phys Chem C, 117 (2013) 22098.
  • Uddin M T, Nicolas Y, Olivier C, Toupance T, Servant L, Müller M M, Kleebe H J, Ziegler J & Jaegermann W, Inorg Chem, 51 (2012) 7764.
  • Ibhadon A O & Fitzpatrick P, Catalysts, 3 (2013) 189.
  • Ahmed S, Rasul M G, Martens W N, Brown R & Hashib M A, Water Air Soil Pollut, 215 (2011) 3.
  • Ahmed S N & Haider W, Nanotechnology, 29 (2018) 34.
  • Linsebigler A L, Lu G & Yates J T, Chem Rev, 95 (1995) 735.
  • Mamaghani A H, Haghighat F & Lee C S, Appl Catal B Environ, 203 (2017) 247.
  • Li Y W & Ma W L, Chemosphere, 280 (2021) 130667.
  • Fujishima A & Honda K, Nature, 238 (1972) 37.
  • Lee C G, Javed H, Zhang D, Kim J H, Westerhoff P, Li Q & Alvarez P J J, Environ Sci Technol, 52 (2018) 4285.
  • Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R, Wang L, Liu H, Liu Y & Ruan R, J Clean Prod, 268 (2020) 121725.
  • Sun Q, Li K, Wu S, Han B, Sui L & Dong L, New J Chem, 44 (2020) 1942.
  • Bin Mukhlish M Z, Najnin F, Rahman M M & Uddin M J, J Sci Res, 5 (2013) 301.
  • Chen W T, Chan A, Jovic V, Sun-Waterhouse D, Murai K I, Idriss H & Waterhouse G I N, Top Catal, 58 (2015) 85.
  • Ohtani B, Catalysts, 3 (2013) 942.
  • Guayaquil-Sosa J F, Serrano-Rosales B, Valadés-Pelayo P J & de Lasa H, Appl Catal B Environ, 211 (2017) 337.
  • Hu Y, Song X, Jiang S & Wei C, Chem Eng J, 274 (2015) 102.
  • Uddin M T, Nicolas Y, Olivier C, Servant L, Toupance T, Li S, Klein A & Jaegermann W, Phys Chem Chem Phys, 17 (2015) 5090.
  • Uddin M T, Babot O, Thomas L, Olivier C, Redaelli M, D’Arienzo M, Morazzoni F, Jaegermann W, Rockstroh N, Junge H &Toupance T, J Phys Chem C, 119 (2015) 7006.
  • Allen N S, Mahdjoub N, Vishnyakov V, Kelly P J & Kriek R J, Polym Degrad Stab, 150 (2018) 131.
  • Zhu T & Gao S P, J Phys Chem C, 118 (2014) 11385.
  • Hanaor D A H & Sorrell C C, J Mater Sci, 46 (2011) 855.
  • Li J G & Ishigaki T, Acta Mater, 52 (2004) 5143.
  • Di Paola A, Bellardita M & Palmisano L, Catalysts, 3 (2013) 36.
  • Luttrell T, Halpegamage S, Tao J, Kramer A, Sutter E & Batzill M, Sci Rep, 4 (2014) 4043.
  • Augustynski J, Electrochim Acta, 38 (1993) 43.
  • Sclafani A & Herrmann J M, J Phys Chem, 100 (1996) 13655.
  • Li Z, Cong S & Xu Y, ACS Catal, 4 (2014) 3273.
  • Liu L, Zhao H, Andino J M & Li Y, ACS Catal, 2 (2012) 817.
  • Nateq M H & Ceccato R, Adv Mater Sci Eng, 2019 (2019) 1.
  • Uddin M T, Nicolas Y, Olivier C, Jaegermann W, Rockstroh N, Junge H & Toupance T, Phys Chem Chem Phys, 19 (2017) 19279.
  • Sun H, Wang C, Pang S, Li X, Tao Y, Tang H & Liu M, J Non Cryst Solids, 354 (2008) 1440.
  • Zhou M, Roualdès S, Zhao J, Autès V & Ayral A, Thin Solid Films, 589 (2015) 770.
  • Le M T, Nguyen H L, Vu A T, Nguyen V C & Wu J C S, J Chinese Chem Soc, 66 (2019) 1713.
  • Dobrovolskiy A, Goncharov A, Kostin E & Frolova E, Probl At Sci Technol, 94 (2014) 145.
  • Chen Y, Huang B, Huang M & Cai B, J Taiwan Inst Chem Eng, 42 (2011) 837.
  • Santhi K, Navaneethan M, Harish S, Ponnusamy S & Muthamizhchelvan C, Appl Surf Sci, 500 (2020) 144058.
  • Anjugam V S A, Pugazhenthiran N, Mangalaraja R V, Sathishkumar P, Viswanathan B & Anandan S, ACS Omega, 3 (2018) 9834.
  • Wu X, Yin S, Dong Q, Guo C, Li H, Kimura T & Sato T, Appl Catal B Environ, 142 (2013) 450.
  • Guo J, Zhu S, Chen Z, Li Y, Yu Z, Liu Q, Li J, Feng C & Zhang D, Ultrason Sonochem 18 (2011) 1082.
  • Mao L, Liu J, Zhu S, Zhang D, Chen Z & Chen C, Ultrason Sonochem, 21 (2014) 527.
  • Prabhudesai V S, Meshram A A, Vinu R & Sontakke S M, Chem Eng J Adv, 5 (2021) 100084.
  • Nagaveni K, Sivalingam G, Hegde M S & Madras G, Environ Sci Technol, 38 (2004) 1600.
  • Nagaveni K, Sivalingam G, Hegde M S & Madras G, Appl Catal B Environ, 48 (2004) 83.
  • Nassar M Y, Ali E I & Zakaria E S, RSC Adv, 7 (2017) 8034.
  • Cui X, Wang J, Zhang X, Wang Q, Song M & Chai J, Langmuir, 35 (2019) 9255.
  • Li X, Zheng W, He G, Zhao R & Liu D, ACS Sustain Chem Eng, 2 (2014) 288.
  • Lee M S, Lee G D, Ju C S & Hong S S, Sol Energy Mater Sol Cells, 88 (2005) 389.
  • Zubieta C E, Soltero - Martínez J F A, Luengo C V & Schulz P C, Powder Technol, 212 (2011) 410.
  • Kubiak A, Bielan Z, Bartkowiak A, Gabała E, Piasecki A, Zalas M, Zielińska-Jurek A, Janczarek M & Siwińska-Ciesielczyk K& Jesionowski T, Catalysts, 10 (2020) 586.
  • Li L, Zhang X, Zhang W, Wang L, Chen X & Gao Y, Colloids Surfaces A Physicochem Eng Asp, 457 (2014) 134.
  • Cano-Casanova L, Amorós-Pérez A, Ouzzine M, Lillo-Ródenas M A & Román-Martínez M C, Appl Catal B Environ, 220 (2018) 645.
  • Wang G, J Mol Catal A Chem, 274 (2007) 185.
  • Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T & Yanagida S, J Mater Chem, 11 (2001) 1694.
  • Jesty T & Reddy M L P, Int J Nanotechnol, 8 (2011) 841.
  • Babić B M, Milonjić S K, Polovina M J & Kaludierović B V, Carbon N Y, 37 (1999) 477.
  • Sreethawong T, Yamada Y, Kobayashi T & Yoshikawa S, J Mol Catal A Chem, 241 (2005) 23.
  • Arsov L D, Kormann C & Plieth W, J Raman Spectrosc, 22 (1991) 573.
  • Li W S, Shen Z X, Li H Y, Shen D Z & Fan X W, J Raman Spectrosc, 32 (2001) 862.
  • Arora A K, Rajalakshmi M, Ravindran T R & Sivasubramanian V, J Raman Spectrosc, 38 (2007) 604.
  • Balaji S, Djaoued Y & Robichaud J, J Raman Spectrosc, 37 (2006) 1416.
  • Leofanti G, Padovan M, Tozzola G & Venturelli B, Catal Today, 41 (1998) 207.
  • Davis E A & Mott N F, Philos Mag, 22 (1970) 903.
  • Sanchez E & Lopez T, Mater Lett, 25 (1995) 271.
  • Murphy A B, Sol Energy Mater Sol Cells, 91 (2007) 1326.
  • Nakaruk A,Ragazzon D & Sorrell C C, Thin Solid Films, 518 (2010) 3735.
  • Lee D Y, Kim J T, Park J H, Kim Y H, Lee I K, Lee M H & Kim B Y, Curr Appl Phys, 13 (2013) 1301.
  • Zhang W, Song N, Guan L X, Li F & Yao M M, J Exp Nanosci, 11 (2016) 185.
  • Bhattacharjee A, Ahmaruzzaman M & Sinha T, Spectrochim JeActa - Part A Mol Biomol Spectrosc, 136 (2015) 751.
  • Barzykin A V & Tachiya M, J Phys Chem B, 106 (2002) 4356.
  • Qian R, Zong H, Schneider J, Zhou G, Zhao T, Li Y, Yang J, Bahnemann D W & Pan J H, Catal Today, 335 (2019) 78.

Abstract Views: 64

PDF Views: 66




  • Hydrothermal Synthesis of Mesoporous TiO2 Nanoparticles for Enhanced Photocatalytic Degradation of Organic Dye

Abstract Views: 64  |  PDF Views: 66

Authors

Md. Tamez Uddin
Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh
Joyanta Mondal
Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh
Shafiul Hossain
Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh
Muhammad Zobayer Bin Mukhlish
Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh

Abstract


In this work, mesoporous TiO2 nanoparticle photocatalyst has been prepared by hydrothermal method using titanium tetrachloride as precursor. The resulting photocatalysts have been characterized using X-ray diffraction (XRD), nitrogen adsorption-desorption analyses, RAMAN spectroscopy, Transmission Electron Microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The results showed that the synthesized OiT2 was anatase phase and mesoporous with specific surface 133.45 m2/g. The decomposition of methylene blue dye under the influence of ultraviolet light was used to test the photocatalytic performance of the produced TiO2 photocatalyst. The photocatalytic activity of the TiO2 photocatalyst for the breakdown of methylene blue dye was significantly higher than that of the commercial TiO2 P25 used as a reference. Moreover, the prepared photocatalyst was stable and reusable. The larger surface area of hydrothermally produced TiO2 was the reason for this enhanced photocatalytic activity. As a result, it is expected that this approach of photocatalytically active semiconducting nanocatalysts will be used in industry to eliminate undesired organics from the environment.

Keywords


Degradation, Dyes, Hydrothermal Method, Photocatalyst, TO2 Nanoparticles.

References