Open Access Open Access  Restricted Access Subscription Access

Synthesis, Theoretical Studies and Viscosity Correlations of Ricinoleic Acid Based Methyl Ester Soap Solution


Affiliations
1 Department of Mechanical Engineering, MEPCO Schlenk Engineering College (Autonomous), Sivakasi, Virudhunagar district, 626 005, Tamil Nadu, India
 

The use of vegetable oils for industrial applications needs chemical modification to improve its properties. For coolants and lubricant applications, the viscosity of vegetable oils plays a vital role which decides the heat dissipation and flow characteristics of vegetable oils. In this study, the viscosity prediction modeling of binary mixtures has been made using refutes empirical relations. The blend viscosity from the model depends on the blend ratios of the unsaturated fatty acids in castor oil and methanol. This blending of castor oil and methanol follows KOH assisted transesterification process to form Fatty Acid Methyl Ester (FAME) soap solution. The transesterified blend mixes have been experimentally analyzed for viscosity using Brookfield viscometer. The measured values of viscosities of the blend mix have been compared with viscosities obtained from refutes binary blend mix model. The percentage deviation between the experimental viscosities and Refutes viscosity prediction model is about 10.76%. The prepared FAME soap solution can be used as coolants and lubricants in manufacturing industries.

Keywords

Castor Oil, Kinetic Modeling, Methanol, Refutes Viscosity Modeling, Transesterification.
User
Notifications
Font Size

  • Konkol K L & Rasmussen S C, Am Chem Soc, 1211 (2015) 245.
  • Sharmeen J B, Mahomoodally F M, Zengin G & Maggi F, Molecules, 26 (2021) 666.
  • Singh Y, Farooq A, Raza A, Mahmood M A & Jain S, Process Safety Environ Prot, 111 (2017) 701.
  • Panhwar T, Mahesar S A, Mahesar A W, Kandhro A A, Talpur F N, Laghari Z H & Sherazi S T H, J Oleo Sci, 65 (2016) 471.
  • V R Patel, Dumancas G G, Viswanath L C K, Maples R & Subong B J J, Lipid Insights, 9 (2016) S40233.
  • Fatimah I, Sagadevan S, Murugan B & O Muraza, Castor Oil (Ricinus communis), (2022) 51.
  • Ogunniyi D S, Bioresource Technol, 97 (2006) 1086.
  • Bittner M L, Casanueva M E, Arbert C C, Aguilera M A, Hernandez V J & Becerra J V, J Chilean Chem Soc, 53 (2008) 1444.
  • Naz R & Bano A, Asian Pacific J Trop Biomedicine, 2 (2012) 944.
  • Hadad M, Zygadlo J A, Lima B, Derita M, Egly Feresin G A B R I E L A, Zacchino S A & Tapia A, J Chilean Chem Soc, 52 (2007) 1186.
  • Iqbal J, Zaib S, Farooq U, Khan A, Bibi I & Suleman S, Int Scholar Res Not, 2012 (2012) 1.
  • Hayet E K, Hocine L & Meriem E K, J Chilean Chem Soc, 62 (2017) 3335.
  • Mensah B & Ochran R, Ghana J Sci, 45 (2005) 41.
  • Caupin H J, Lipid Technol Appl, 1 (2018) 787.
  • Lenk R S & Lenk R S, Polym Rheol, (1978) 1.
  • Fasina O O & Colley Z, Int J Food Prop, 11 (2008) 738.
  • El Hefian E A, Nasef M, Yahaya A H & Khan R A, J Chilean Chem Soc, 55 (2010) 130.
  • Abdelraziq I R & Nierat T H, Rheol J Mater Sci Eng, 5 (2015) 1000220.
  • Diamante L M & Lan T, J Food Process, 2014 (2014) 1.
  • Igwe I O, Indust Crops Prod, 19 (2004) 185.
  • Mubofu E B, Sust Chem Process, 4 (2016) 1.
  • Naughton F C, J Am Oil Chem Soc, 51 (1974) 65.
  • McNutt J, J Indust Eng Chem, 36 (2016) 1.
  • Karmakar G, Ghosh P & Sharma B K, Lubricants, 5 (2017) 44.
  • Solomon B D, Barnes J R & Halvorsen K E, Biomass Bioenergy, 31 (2007) 416.
  • Iyahraja S, Rajadurai J S, Sivakumar M & Lenin N N, Bullet Chem Soc Ethiop, 37 (2023) 505.
  • Otera J, Transesterification, Chemical Reviews, 4 (1993) 1449.
  • Sousa L L, Lucena I L & Fernandes F A, Fuel Process Technol, 91 (2010) 194.
  • Ramezani K, Rowshanzamir S & Eikani M H, Energy, 35 (2010) 4142.
  • Van Boekel M & Tijskens L, Kinet Model, 7 (2001) 35.
  • Gao J, Guan D, Xu D, Zhao L, Zhang L & Li M, Bullet Chem Soc Ethiop, 32 (2018) 351.
  • Symoniuk E, Ratusz K, Ostrowska-Ligęza E & Krygier K, Food Anal Meth, 11 (2018) 1095.
  • Nautiyal O H, Res Rev J Chem, 7 (2018) 1.
  • Wahyuningsih T D, Indian J Chem Technol, 27 (2020) 326.
  • Gilbert E E, J Chem Educ, 18 (1941) 338.
  • Hawke F, South Afr J Chem, 2 (1949) 1.
  • Kumar N, Tomar M, Sonthalia A, Kumar P, Pali H S & Mishra D, Sustain Develop Energy Power Propul, 1 (2020) 563.
  • Bukhtiyarova M, Lunkenbein T, Kähler K & Schlögl R, Catal Lett, 147 (2017) 416.
  • Dalena F, Senatore A, Marino A, Gordano A, Basile M & Basile A, 1 (2018) 3.
  • Musa I A, Egypt J Pet, 25 (2016) 21.
  • Doungsri S & Sookkumnerd T, Solubility curves of FAME+ Methanol+ Glycerol, TIChE Int Conf, (2011).
  • Roni K A, Herawati N, Dewi D K & Martini S, J Eng Sci Res, 3 (2021) 32.
  • Uthranarayan C, J Chilean Chem Soc, 67 (2022) 5636.
  • Chaudhary P, Kumar B, Kumar S & Gupta V K, Chem Prod Process Mod, 10 (2015) 71.
  • Platonov A Y, Kurzin A V & Evdokimov A N, J Solut Chem, 39 (2010) 335.
  • Ba S, Zhang H, Lee Y J, Ng C W & Li T, Europ J Lipid Sci Technol, 118 (2016) 651.
  • Nitbani F O, Tjitda P J P, Wogo H E & Detha A I R, J Oleo Sci, 71 (2022) 781.
  • Ezzati R, Ranjbar S & Soltanabadi A, Renew Energy, 168 (2021) 280.
  • Darnoko D & Cheryan M, J Am Oil Chem Soc, 77 (2000) 1263.
  • Zhmud B, Lube Mag, 121 (2014) 24.

Abstract Views: 63

PDF Views: 62




  • Synthesis, Theoretical Studies and Viscosity Correlations of Ricinoleic Acid Based Methyl Ester Soap Solution

Abstract Views: 63  |  PDF Views: 62

Authors

Rathinam Maheswaran
Department of Mechanical Engineering, MEPCO Schlenk Engineering College (Autonomous), Sivakasi, Virudhunagar district, 626 005, Tamil Nadu, India
Subramanian Karthikeyan
Department of Mechanical Engineering, MEPCO Schlenk Engineering College (Autonomous), Sivakasi, Virudhunagar district, 626 005, Tamil Nadu, India

Abstract


The use of vegetable oils for industrial applications needs chemical modification to improve its properties. For coolants and lubricant applications, the viscosity of vegetable oils plays a vital role which decides the heat dissipation and flow characteristics of vegetable oils. In this study, the viscosity prediction modeling of binary mixtures has been made using refutes empirical relations. The blend viscosity from the model depends on the blend ratios of the unsaturated fatty acids in castor oil and methanol. This blending of castor oil and methanol follows KOH assisted transesterification process to form Fatty Acid Methyl Ester (FAME) soap solution. The transesterified blend mixes have been experimentally analyzed for viscosity using Brookfield viscometer. The measured values of viscosities of the blend mix have been compared with viscosities obtained from refutes binary blend mix model. The percentage deviation between the experimental viscosities and Refutes viscosity prediction model is about 10.76%. The prepared FAME soap solution can be used as coolants and lubricants in manufacturing industries.

Keywords


Castor Oil, Kinetic Modeling, Methanol, Refutes Viscosity Modeling, Transesterification.

References