Open Access Open Access  Restricted Access Subscription Access

Graphene-Based Nanocomposites : An Efficient Detoxification Agent for Heavy Metal Removal from Wastewater


Affiliations
1 Indian Institute of Technology, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India
2 Department of Chemistry, CBSH, G. B. Pant University of Agriculture and Technology, Pantnagar-263 145, Uttarakhand, India
 

Numerous scientific and technological developments in wastewater treatment procedures are brought on by the shortage of clean water supplies. Heavy metals' recalcitrance in wastewater has been shown to be a difficult issue. Further, drinking water quality must be at its highest for human health to be at its best; nevertheless, a number of human activities are continuously degrading it, which has an effect on human health either directly or indirectly. Because heavy metals are the primary causes of many chronic illnesses and have a tendency to bio accumulate, they are giving rise to a lot of worries. Technologies from all over the world are being developed to address the demand for clean drinking water. The objective of the current study is to raise awareness of the need to remove dangerous dense metals from various types of wastewater and the application of modified graphene nanocomposite for their adsorption-based removal. Graphene-based nanocomposite materials have been picked for this application due to their large surface area, superior mechanical strength, and reactivity towards polar and nonpolar contaminants for the electrostatic emission of the heavy metal ions arsenic (As), chromium (Cr), copper (Cu), and lead (Pb).

Keywords

Graphene Nanocomposite, Decontamination, Pollutants, Heavy Metals, Adsorption.
User
Notifications
Font Size

  • Puri A & Kumar M, J Occup Environ Med, 16 (2012) 40.
  • Cocarta D M, Neamtu S & Deac A M R, J Environ Sci Technol, 13 (2016) 2025.
  • Tuzen M, Food Chem Toxicol, 47 (2009) 1785.
  • Mahurpawar M, Int J Res Granthaalayah, 2350 (2015) 2394.
  • Aghigh A, Alizadeh V, Wong H Y, Islam M S, Amin N & Zaman M, Desalination, 365 (2015) 389.
  • Palanisamy S, Eswaran R & Muniasamy M, Appl Ecol Environ Sci, 9 (2021) 247.
  • Ali I, Basheer A A, Mbianda X Y, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A & Grachev V, Environ Int, 127 (2019) 160.
  • Madaeni S S, Water Res, 33 (1999) 301.
  • Chen G, Sep Purif Technol, 38 (2004) 11.
  • Chopra A, Sharma A & Kumar V, Arch Appl Sci Res, 3 (2011) 191.
  • Yang Z, Zhou Y, Feng Z, Rui X, Zhang T & Zhang Z, Polymers (Basel), 11 (2019) 1.
  • Deng D, Aouad W, Braff W A, Schlumpberger S, Suss M E & Bazant M Z, Desalination, 357 (2015) 77.
  • Choi H, Al-Abed S R, Dionysiou D D, Stathatos E & Lianos P, Chapter 8 TiO2-Based Advanced Oxidation Nanotechnologies for Water Purification and Reuse, Elsevier, 2 (2010).
  • Chen Q, Yao Y, Li X, Lu J, Zhou J & Huang Z, J Water Process Eng, 26 (2018) 289.
  • Wu H, Wang W, Huang Y, Han G, Yang S, Su S, Sana H, Peng W, Cao Y & Liu J, J Hazard Mater, 371 (2019) 592.
  • Atkovska K, Paunovik P, Dimitrov A, Lisichkov K, Alghuthaymi M & Grozdanov A, Graphene and activated graphene as adsorbents for removal of heavy metals from water resources, Elsevier, (2019).
  • Huang D, Li B, Wu M, Kuga S & Huang Y, J Chem Eng Data, 63 (2018) 2097.
  • Verma S & Verma B, Graphene-based nanomaterial for supercapacitor application. In Nanostructured Materials for Supercapacitors (Springer International Publishing), (2022) 221.
  • Verma S, Pandey V K & Verma B, Mater Technol, 37 (2022) 2915.
  • Liu F, Chung S, Oh G & Seo T S, ACS Appl Mater Interfaces, 4 (2012) 922.
  • Hu X, You S, Li F & Liu Y, Front Environ Sci Eng, 16 (2022) 48.
  • Yu J G, Yu L Y, Yang H, Liu Q, Chen X H, Jiang X Y, Chen X Q & Jiao F P, Sci Total Environ, 502 (2015) 70.
  • Ciriminna R, Zhang N, Yang M Q, Meneguzzo F, Xu Y J & Pagliaro M, Chem Commun, 51 (2015) 7090.
  • Chang L, Pu Y, Jing P,Cui Y, Zhang G, Xu S, Cao B, Guo J, Chen F & Qiao C, Appl Surf Sci, 541 (2021) 148400.
  • Song H, Hao L, Tian Y, Wan X, Zhang L & Lv Y, Chempluschem, 77 (2012) 379.
  • Zhao J, Ren W & Cheng H M, J Mater Chem, 22 (2012) 20197.
  • Higgins D, Zamani P, Yu A & Chen Z, Energy Environ Sci, 9 (2016) 357.
  • Xu Z, Pan G, Zhang G, Wang L, Song S & Fu D, IOP Conf Ser Earth Environ Sci, 170 (2018) 032074.
  • Zhang Y, Huang L J, Wang Y X, Tang J G, Wang Y, Cheng M M, Du Y C, Yang K, Kipper M J & Hedayati M, Polymers (Basel), 11 (2019) 1.
  • Grachev V A, Alharbi O M L, Ali I, Tkachev A, Galunin E & Burakov A, Environ Sci Pollut Res, 25 (2018) 7315.
  • Verma S, Pandey V K &Verma B, Synth Met, 286 (2022) 117036.
  • Yang S T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y & Cao A, J Colloid Interface Sci, 351 (2010) 122.
  • Porjazoska-Kujundziski A, Markovska L & Meshko V, Zast Mater, 56 (2015) 179.
  • Siddiqui S I & Chaudhry S A, Process Saf Environ Prot, 111 (2017) 592.
  • Yu Y, Yu L, Wang C & Chen J P, J Colloid Interface Sci, 530 (2018) 658.
  • Wong W, Wong H Y, Badruzzaman A B M, Goh H H & Zaman M, Nanotechnology, 28 (2016) 4.
  • Pan B, Pan B, Zhang W, Lv L, Zhang Q & Zheng S, Chem Eng J, 151 (2009) 19.
  • Monrad M, Ersbøll A K, Sørensen M, Baastrup R, Hansen B, Gammelmark A, Tjønneland A, Overvad K & Raaschou-Nielsen O, Environ Res, 154 (2017) 318.
  • Kazi T G, Brahman K D, Baig J A & Afridi H I, J Hazard Mater, 357 (2018) 159.
  • Gautam R K, Sharma S N, Mahiya S & Chattopadhyaya M C, Heavy Met Water, (2014) 1.
  • Andjelkovic I, Azari S, Erkelens M, Forward P, Lambert M F & Losic D, RSC Adv, 7 (2017) 3941.
  • Mishra A K & Ramaprabhu S, Desalination, 282 (2011) 39.
  • Zhu J, Sadu R, Wei S, Chen D H, Haldolaarachchige N, Luo Z, Gomes J A, Young D P & Guo Z, ECS J Solid State Sci Technol, 1 (2012) M1.
  • Sheng G, Li Y, Yang X, Ren X, Yang S, Hu J & Wang X, RSC Adv, 2 (2012) 12400.
  • Vadahanambi S, Lee S H, Kim W J & Oh I K, Environ Sci Technol, 47 (2013) 10510.
  • Wen T, Wu X, Tan X, Wang X & Xu A, ACS Appl Mater Interfaces, 5 (2013) 3304.
  • Paul B, Parashar V & Mishra A, Environ Sci Water Res Technol, 1 (2015) 77.
  • Yoon Y, Park W K, Hwang T M, Yoon D H, Yang W S & Kang J W, J Hazard Mater, 304 (2016) 196.
  • Roy E, Patra S, Madhuri R & Sharma P K, Chem Eng J, 299 (2016) 244.
  • Khatamian M, Khodakarampoor N & Saket-Oskoui M, J Colloid Interface Sci, 498 (2017) 433.
  • Yoon Y, Zheng M, Ahn Y T, Park W K, Yang W S & Kang J W, Sep Purif Technol, 178 (2017) 40.
  • Su H, Ye Z & Hmidi N, Colloids Surfaces A Physicochem Eng Asp, 522 (2017) 161.
  • Shahrin S, Lau W J, Goh P S, Jaafar J & Ismail A F, Chem Eng Technol, 41 (2018) 2250.
  • Wu L K, Wu H, Bin Zhang H, Cao H Z, Hou G Y, Tang Y P & Zheng G Q, Chem Eng J, 334 (2018) 1808.
  • Wu K, Jing C, Zhang J, Liu T, Yang S & Wang W, Appl Surf Sci, 466 (2019) 746.
  • Kamali N, Ghasemi J B, Mohamadi Ziarani G, Moradian S & Badiei A, Chinese J Chem Eng, (2022).
  • Rodríguez M C, Barsanti L, Passarelli V, Evangelista V, Conforti V & Gualtieri P, Environ Res, 105 (2007) 234.
  • Moreno-Sánchez R, Campos-García J, Loza-Tavera H, Cervantes C, Devars S, Gutiérrez-Corona F & Torres-Guzmán J C, FEMS Microbiol Rev, 25 (2001) 335.
  • Mohanty M & Patra H K, J Stress Physiol Biochem, 9 (2013) 232.
  • Wolińska A, Stępniewska Z & Włosek R, Nat Sci, 05 (2013) 253.
  • Abdul Ghani A G, Egypt Acad J Biol Sci H Bot, 2 (2011) 9.
  • Sreemoyee Chatterjee, Int J Adv Res, 3 (2015) 167.
  • Sedman R M, Beaumont J, McDonald T A, Reynolds S, Krowech G & Howd R, J Environ Sci Heal Part C Environ Carcinog Ecotoxicol Rev, 24 (2006) 155.
  • Yuan X, Wang Y, Wang J, Zhou C, Tang Q & Rao X, Chem Eng J, 221 (2013) 204.
  • Li L, Luo C, Li X, Duan H & Wang X, Int J Biol Macromol, 66 (2014) 172.
  • Chauke V P, Maity A & Chetty A, J Mol Liq, 211 (2015) 71.
  • Ge H & Ma Z, Carbohydr Polym, 131 (2015) 280.
  • Guo F Y, Liu Y G, Wang H, Zeng G M, Hu X J, Zheng B H, Li T T, Tan X F, Wang S F & Zhang M M, RSC Adv, 5 (2015) 45384.
  • Zhao D, Gao X, Wu C, Xie R, Feng S & Chen C, Appl Surf Sci, 384 (2016) 1.
  • He C, Yang Z, Ding J, Chen Y, Tong X & Li Y, Colloids Surfaces A Physicochem Eng Asp, 520 (2017) 448.
  • Al Nafiey A,Addad A, Sieber B, Chastanet G, Barras A, Szunerits S & Boukherroub R, Chem Eng J, 322 (2017) 375.
  • Fang W, Jiang X, Luo H & Geng J, Chemosphere, 197 (2018) 594.
  • Zhang K, Li H, Xu X & Yu H, Micropor Mesopor Mater, 255 (2018) 7.
  • Samuel M S, Bhattacharya J, Raj S, Santhanam N, Singh H & Pradeep Singh N D, Int J Biol Macromol, 121 (2019) 285.
  • Wang X, Lu J, Cao B, Liu X, Lin Z, Yang C, Wu R, Su X & Wang X, Colloids Surfaces A Physicochem Eng Asp, 560 (2019) 384.
  • Pan H, Zhao D & Wang L, Adv Condens Matter Phys, 2022 (2022) 1.
  • Rosenzweig A C, Acc Chem Res, 34 (2001) 119.
  • Prohaska J R, Am J Clin Nutr, 88 (2008) 826.
  • Boal A K & Rosenzweig A C, Chem Inform, 41 (2010) 4760.
  • Badiye A, Kapoor N & Khajuria H, Res J Recent Sci, 2 (2013) 58.
  • Singh R P, Kumar S, Nada R & Prasad R, Mol Cell Biochem, 282 (2006) 13.
  • Araya M, Olivares M, & Pizarro F, Inter J Environ Health, 1 (2007) 608.
  • Musacco-Sebio R, Saporito-Magriñá C, Acosta J M, Boveris A & Repetto M G, Liver Res Open J, 2 (2018) 9.
  • Sayre L M, Perry G, Harris P L R, Liu Y, Schubert K A & Smith M A, J Neurochem, 74 (2000) 270.
  • White A R, Huang X, Jobling M F, Barrow C J, Beyreuther K, Masters C L, Bush A I & Cappai R, J Neurochem, 76 (2001) 1509.
  • Brewer G J, J Hepatol, 47 (2007) 621.
  • Song M, Zhou Z, Chen T, Zhang J & McClain C J, J Pharmacol Exp Ther, 339 (2011) 298.
  • Gaetke L M, Chow-Johnson H S & Chow C K, Arch Toxicol, 88 (2014) 1929.
  • Wu W, Yang Y, Zhou H, Ye T, Huang Z, Liu R & Kuang Y, Water Air Soil Pollut, 224 (2013) 1372.
  • Li L, Wang Z, Ma P, Bai H, Dong W & Chen M, J Polym Res, 22 (2015) 1.
  • Hu X J, Liu Y G, Wang H, Zeng G M, Hu X, Guo Y M, Li T T, Chen AW, Jiang L H & Guo F Y, Chem Eng Res Des, 93 (2015) 675.
  • Xing H T, Chen J H, Sun X, Huang Y H, Su Z B, Hu S R, Weng W, Li S X, Guo H X, Wu W B, He Y S, Li F M & Huang Y, Chem Eng J, 263 (2015) 280.
  • Liu Y, Chen L, Li Y, Wang P & Dong Y, J Environ Chem Eng, 4 (2016) 825.
  • White R L, White C M, Turgut H, Massoud A & Tian Z R, J Taiwan Inst Chem Eng, 85 (2018) 18.
  • Hosseinzadeh H & Ramin S, Int J Biol Macromol, 113 (2018) 859.
  • Yi X, Sun F, Han Z, Han F, He J, Ou M, Gu J & Xu X, Ecotoxicol Environ Saf, 158 (2018) 309.
  • Zhang H, Chang Q, Jiang Y, Li H & Yang Y, Nanotechnology, 29 (2018) 135706.
  • li Cao M, Li Y, Yin H & Shen S, Ecotoxicol Environ Saf, 173 (2019) 28.
  • Verma M, Lee I, Oh J, Kumar V & Kim H, Chemosphere, 287 (2022) 132385.
  • Kumar M, Chung J S &Hur S H, Appl Sci, 9 (2019) 2925.
  • Sinicropi M S, Amantea D, Caruso A & Saturnino C, Arch Toxicol, 84 (2010) 501.
  • Patrick L, Altern Med Rev, 11 (2006) 2.
  • Tiwari S, Tripathi I P & Tiwari H L, Nutr Rev, 39 (2013) 378.
  • Bharadwaj A, Yadav D & Varshney S, Int J Adv Technol Eng Sci, 3 (2015) 184.
  • Caporale A G & Violante A, Curr Pollut Reports, 2 (2016) 15.
  • Johnson F M, Mutat Res Rev Mutat Res, 410 (1998) 123.
  • Papanikolaou N C, Hatzidaki E G, Belivanis S, Tzanakakis G N & Tsatsakis A M, Med Sci Monit, 11 (2005) RA329.
  • Sen Gupta S, Sreeprasad T S, Maliyekkal S M, Das S K & Pradeep T, ACS Appl Mater Interfaces, 4 (2012) 4156.
  • Herbert N, Metal Int, 13 (2004) 56.
  • Basha R & Rajarami G R, Indian J Exp Biol, 48 (2010) 636.
  • Alessia C, Alessia C, Graziantonio L, Maria S S & Giuseppe G, Rev Environ Contam Toxicol, 238 (2016) 45.
  • Salazar-Flores J, Torres-Jasso J H, Rojas- Bravo D, Reyna-Villela Z M & Torres- Sanchez E D, J Heavy Met Toxic Dis, 04 (2019) 1.
  • Madadrang C J, Kim H Y, Gao G, Wang N, Zhu J, Feng H, Gorring M, Kasner M L & Hou S, ACS Appl Mater Interfaces, 4 (2012) 1186.
  • Cui L, Wang Y, Gao L, Hu L, Yan L, Wei Q & Du B, Chem Eng J, 281 (2015) 1.
  • Yari M, Rajabi M, Moradi O, Yari A, Asif M, Agarwal S & Gupta V K, J Mol Liq, 209 (2015) 50.
  • Wan S, He F, Wu J, Wan W, Gu Y & Gao B, J Hazard Mater, 314 (2016) 32.
  • Hu L, Yang Z, Cui L, Li Y, Ngo H H, Wang Y, Wei Q, Ma H, Yan L & Du B, Chem Eng J, 287 (2016) 545.
  • Nyairo W N, Eker Y R, Kowenje C, Zor E, Bingol H, Tor A & Ongeri D M, Water Air Soil Pollut, 228 (2017) 406.
  • Nasiri R, Arsalani N & Panahian Y, J Clean Prod, 201 (2018) 507.
  • Lingamdinne L P, Koduru J R, Chang Y Y & Karri R R, J Mol Liq, 250 (2018) 202.
  • Wei B, Cheng X, Wang G, Li H, Song X & Dai L, Appl Sci, 9 (2019) 1390.
  • Futalan C M, Phatai P, Kim, J S, Maulana A Y & Yee J J, Environ Sci Pollut Res, 26 (2019) 17292.
  • Lingamdinne L P, Godlaveeti S K, Angaru G K R, Chang Y Y, Nagireddy R R, Somala A R & Koduru J R, Chemosphere, 299 (2022) 134457.
  • Paney V K ,Verma S & Verma B, Chem Phys Lett, 802 (2022) 139780.
  • Verma S, Das T, Pandey V K & Verma B, J Mol Struct, 1266 (2022) 133515.
  • Sonwani R K, Swain G, Giri B S, Singh R S & Rai B N, Bioresour Technol, 281 (2019) 335.

Abstract Views: 79

PDF Views: 73




  • Graphene-Based Nanocomposites : An Efficient Detoxification Agent for Heavy Metal Removal from Wastewater

Abstract Views: 79  |  PDF Views: 73

Authors

Sanjeev Verma
Indian Institute of Technology, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India
Shivani Verma
Department of Chemistry, CBSH, G. B. Pant University of Agriculture and Technology, Pantnagar-263 145, Uttarakhand, India
Tapas Das
Indian Institute of Technology, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India
Bhawna Verma
Indian Institute of Technology, Banaras Hindu University, Varanasi-221 005, Uttar Pradesh, India

Abstract


Numerous scientific and technological developments in wastewater treatment procedures are brought on by the shortage of clean water supplies. Heavy metals' recalcitrance in wastewater has been shown to be a difficult issue. Further, drinking water quality must be at its highest for human health to be at its best; nevertheless, a number of human activities are continuously degrading it, which has an effect on human health either directly or indirectly. Because heavy metals are the primary causes of many chronic illnesses and have a tendency to bio accumulate, they are giving rise to a lot of worries. Technologies from all over the world are being developed to address the demand for clean drinking water. The objective of the current study is to raise awareness of the need to remove dangerous dense metals from various types of wastewater and the application of modified graphene nanocomposite for their adsorption-based removal. Graphene-based nanocomposite materials have been picked for this application due to their large surface area, superior mechanical strength, and reactivity towards polar and nonpolar contaminants for the electrostatic emission of the heavy metal ions arsenic (As), chromium (Cr), copper (Cu), and lead (Pb).

Keywords


Graphene Nanocomposite, Decontamination, Pollutants, Heavy Metals, Adsorption.

References