Open Access Open Access  Restricted Access Subscription Access

Applications of Carbon Nanotubes in Energy Storage Devices


Affiliations
1 Department of Chemistry, SNS College of Technology, Coimbatore, Tamil Nadu, India
2 Department of Chemistry, KGISL Institute of Technology, Coimbatore, Tamil Nadu, India
3 Department of chemistry, Faculty of Engineering Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
 

The development of carbon nanotubes (CNTs) has contributed to the advancement in science and technology. If CNTs could be properly engineered, they can pave the way for the future development of numerous additional materials for a variety of purposes. The open and enriched chiral structure of CNTs enabled improvements in the properties and performances of other materials, when CNTs are incorporated in them. Depending on the structural and morphological requirements, CNTs have been incorporated in energy storage systems either as an additive to improve the electronic conductivity of cathode materials or as an active anode component. Furthermore, they have also been used directly as the electrode material in supercapacitors and fuel cells. Therefore, demand for CNTs is increasing due to their underlying properties and prospective applications in the energy storage research fields. Different types of CNTs are used in energy storage devices such as batteries, supercapacitors, fuel cells, and other devices. This chapter focuses on the review of CNTs in various energy conversion and storage systems, how their morphology and structure affect the electrochemical capabilities and energy storage methods.

Keywords

Carbon Nanotubes, Synthesis, Energy Storage Applications.
User
Notifications
Font Size

  • Jian Z, Liu P, Li F, He P, Guo X & Chen M, & Haoshen. Z, Angew Chemie Int, 53 (2014) 442.
  • Wei H, Gu H, Guo J , Cui D, Yan X & Liu J, Cao X, Wang S, Wei J & Guo Z, Adv Compos Hybrid Mater, 1 (2017) 127.
  • Iijima S, Ajayan M & Ichihashi T, Phys Rev Lett, 69 (1992) 3100.
  • Le Z, Liu F, Nie P, Li X, Liu X, Bian Z, Chen, G, Wu H B & Lu Y, ACS Nano, 11 (2017) 2952.
  • Xu A N, Sun X & Zhao F, Capacitor Acta, 236 (2017) 443.
  • Dobrota A S , Pašti I A , Mentus S V , Johansson B & Skorodumova N V, Electrochim Acta, 250 (2017) 185.
  • Dai Z S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C & Zhan X, Adv Mater, 29 (2017) 1700144.
  • Iqbal S & Ahmad S, J Ind Eng Chem, 60 (2018) 53.
  • Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J , Tang J & Tang W, Electrochim Acta, 112 (2013) 44.
  • Cao Z, Yang H, Dou P, Wang C, Zheng J & Xu X, Electrochim Acta, 708 (2016) 209700.
  • Gross J H, Fuel Cell Technol, (2002) 103847.
  • Whittingham M S, Proc IEEE, 100 (2012) 1518.
  • Mai L, Dong F, Xu X, Luo Y, An Q, Zhao Y, Pan J & Yang J, Nano Lett, 13 (2013) 740.
  • Cao Z , Yang H, Dou P, Wang C, Zheng J & Xu X, Electrochim Acta, 209 (2016) 700.
  • Ge S H, Leng Y J, Liu T, Longchamps R S, Yang X G, Gao Y, Wang D W, Wang D H & Wang C Y, Sci Adv, 6 (2020) 7633.
  • Liu Y, Wang Y, Wang F, Lei Z X, Zhang W H, Pan K M, Liu J, Chen M, Wang G X, Ren F Z & Wei S Z, Nanomaterials, 9 (2019) 1689
  • Ge S H, Leng Y J, Liu T, Longchamps R S, Yang X G, Gao Y, Wang D W, Wang D H & Wang C Y, Sci Adv, 6 (2020) 7633.
  • De Volder M F, Tawfick S H, Baughman R H & Hart A J, Appl Sci J, 339 (2013) 535.
  • Zhang Q, Huang J Q, Qian W Z, Zhang Y Y & Wei F, Nano Micro Small, 9 (2013) 1237.
  • Fang X, Shashurin A, Teel G & Keidar M, Carbon, 107 (2016) 273.
  • Yang F, Wang X, Zhang D, Yang J, Luo D & Xu Z, Catal Nat, 510 (2014) 522.
  • Kreupl F, Carbon nanotubes in microelectronic applications, carbon nanotube devices: properties modeling integration and applications Wiley, New York, (2008)
  • Lin C C, Leu I C, Yen J H & Hon M H, Nanotechnology, 15 (2004) 176.
  • Rao R, Pint C L, Islam A E, Weatherup R S, Hofmann S, Meshot E R, Wu F, Zhou C, Dee N, Amama P B, Carpena N, Shi W, Plata L D, Rnev S E, Yakobsan I B, Balbuen. B P, Bichara C, Futaba N D, Nada S, Shin H, Kim S K, Simard B, Mirb F, Pasquali M, Fernasiera F, Kauppineo I E, Arnold M, Cora A B, Nikolav P, Arepalli S, Cheng H, Zakhararav N. D, Stach G E, Zhang J, Wei J, Terrones M, Geohagan B D, Narayama B, Maruyama S, Li Y, Adams W W & Hart A J, ACS Nano, 12 (2018) 11756.
  • Bingshe X, Li T, Liu X, Lin X & Li J, Thin Solid Films, 515 (2007) 6726.
  • Bell M S, Teo K B K, Lacerda R G, Milne W I, Hash D B & Meyyappan M, Pure Appl Chem, 78 (2006) 1117.
  • Cui L F, Hu L, Choi J W & Cui Y, ACS Nano, 4 (2010) 3671.
  • Gwon H, Kim H S, Lee K U, Seo D H, Park Y C, Lee Y S, Ahn B T & Kang K, Energy Environ Sci, 4 (2011) 1277.
  • Ng S H, Wang J, Guo Z P, Chen J, Wang G X & Liu H K, Electrochim Acta, 51 (2005) 23.
  • Li X, Yang J, Hu Y, Wang J, Li Y, Cai M, Li R & Sun X, J Mater Chem, 22 (2012) 18847.
  • Landi B J, Ganter M J, Schauerman C M, Cress C D & Raffaelle R P, J Phys Chem C, 112 (2008) 7509.
  • Dileo R A, Frisco S, Ganter M J, Rogers R E, Raffaelle R P & Landi B J, J Phys Chem C, 115 (2011) 22609.
  • Lahiri I, Oh S W, Hwang J Y, Cho S, Sun Y K, Banerjee R & Choi W, ACS Nano, 4 (2010) 3440.
  • Chen J, Liu Y, Minett A, Lynam C, Wang J & Wallace G G, Chem Mater, 19 (2007) 3595.
  • Chung S H & Manthiram A, J Phys Chemi Lett, 5 (2014) 1978.
  • Sun Z, Xie C, Fan Z, Shen F, Yin Y, Niu C, & Xiaogang H, J Nanopart Res, 22 (2020) 160.
  • Cheng X, Wang W, Wang A, Yuan K, Jin Z, Yang Y, & Zhao X, RSC Adv, 6 (2016) 89972.
  • Liu B, Wu X, Wang S, Tang Z, Yang Q & Hu G H, Nanomaterials, 7 (2017) 196.
  • Geng Y, Ma Z, Su L, Sang L, Ding F & Shao G, J Alloys Compd, 815 (2020) 152189.
  • Wei L, Li W, Zhao T, Zhang N, Li L & Wu F, Chem Commun, 56 (2020) 3007.
  • Jeong Y C, Kim J H, Kwon S H, Oh J Y, Park J, Jung Y, Lee S G, Yang S J & Park C R, J Mater Chem A, 5 (2017) 23909.
  • Yao S, Cui J, Huang J Q, Lu Z, Deng Y, Chong W G, Wu J, Insan M Haq U & Kim J K, Adv Energy Mater, 8 (2018) 1800710.
  • Jiang S, Chen M, Wang X, Zeng P, Li Y & Liu H, Wu J, Insan M, Haq U & Kim J K, Electrochim Acta, 313 (2019) 151.
  • Xiang K, Wen X, Hu J, Wang S & Chen H, Chem Sus Chem, 12 (2019) 3602.
  • Longoni G, Wang J E, Jung Y H, Kim D K, Mari C M & Ruffo R, J Power Sources, (2016) 61.
  • Wang X, Zhang H, Xu Y, Chen C, Yuan H & Wang Y, RSC Adv, 6 (2016) 67986.
  • Kumar P R, Jung Y H, Wang J E & Kim D K, J Power Sources, 324 (2016) 421.
  • Chen H, Zhang B, Wang X, Dong P, Tong H, Zheng J C, Yu W & Zhang J, ACS Appl Mater Interfaces, 10 (2018) 3590.
  • Kim S, Li X, Sang L, Yun Y S, Nuzzo R G, Gewirth A A & Braun P V, Adv Mater Interfaces, 5 (2018) 1801342.
  • Wang Z, Liu Y, Wu Z, Guan G, Zhang D, Zheng H, Xu S, Liu S & Hao X, Nanoscale, 9 (2017) 823.
  • Lach J, Wróbel K, Wróbel J, Podsadni P & Czerwiński A, J Solid State Electrochem, 23 (2019) 693.
  • Hao Z, Xu X, Wang H, Liu J, Yan H, Ionics, 24 (2018) 951.
  • Moseley P T, Rand D A J & Peters K, J Power Sources, 295 (2015) 268.
  • Moseley P T, Rand DAJ, Davidson A & Monahov B, J Energy Storage, 19 (2018) 272.
  • Ebner E, Burow D, Panke J, Börger A, Feldhoff A, Atanassova P, Valenciano J, Wark M & Rühl E, J Power Sources, 222 (2013) 554.
  • Wang L, Zhang H, Zhang W, Cao G, Zhao H & Yang Y, Mater Lett, 206 (2017) 113.
  • Wang C, Xie Z & Zhou Z, Materials, 7 (2019) 040701.
  • Jung H G, Jeong Y S, Park J B, Sun Y K, Scrosati B & Lee Y J, ACS Nano 7 (2013) 3532.
  • Kim H, Lim H D, Kim J & Kang K, J Mater Chem A, 2 (2014) 33.
  • Lee D U, Park H W, Park M G, Ismayilov V & Chen Z, ACS Appl Mater Interfaces, 7 (2015) 902.
  • Zhao L, Wang Z, Li J, Zhang J, Sui X & Zhang L, J Mater Chem A, 3 (2015) 5313.
  • Wee J H, Lee K Y & Kim S H, J Power Sources, 165 (2007) 667.
  • Negro E, Latsuzbaia R, Dieci M, Boshuizen I & Koper G J, Appl Catal B: Environ, 166 (2015) 155.
  • Choi J Y, Higgins D & Chen Z, J Electrochem Soc, 159 (2012) 86.
  • Rajalakshmi N, Ryu H, Shaijumon M M & Ramaprabhu S, J Power Sources, 140 (2005) 250.
  • Jha N, Ramesh P, Bekyarova E, Tian X, Wang F, Itkis E M & Haddon C R, Sci Rep, 3 (2013) 2257.
  • Girishkumar G, Rettker M, Underhile R, Tian X, Wang F, Itkis E M & Haddon C R, Langmuir, 21 (2005) 8487.
  • Matsumoto T, Komatsu T, Arai K, Yamazaki J, Kijima M, Shimzu H, Takasawa Y & Nakamura J, Chem Commun, 10 (2004) 840.
  • Sun X, Li R, Villers D, Dodelet J P & Désilets S, Chem Phys Lett, 379 (2003) 99.
  • Liu H, Song C, Zhang L, Zhang J, Wang H & Wilkinson D P, J Power Sources, 155 (2006) 95.
  • Jin Y, Chen H, Chen M, Liu N & Li Q, ACS Appl Mater Interfaces, 5 (2013) 3408.
  • Zhu Y G, Wang Y, Shi Y, Wong J I & Yang H Y, Nano Energy, 3 (2014) 46.
  • Xiao X, Peng X, Jin H, Li T, Zhang C, Gao B, Hu B, Huo K & Zhou J, Adv Mater, 25 (2013) 5091.
  • Kang Y J, Chung H, Han C H & Kim W, Nanotechnology, 23 (2012) 065401.
  • Liu Q, Yang J, Luo X, Miao Y, Zhang Y, Xu W, Yang L, Liang Y, Weng W & Zhu M, Ceram Int, 46 92020) 11874.
  • Ben J, Song Z, Liu X, Lu W & Li X, Nanoscale Res Lett, 15 (2020) 151.
  • Liu Y, Li G, Guo Y, Ying Y & Peng X, ACS Appl Mater Interfaces, 9 (2017) 14043.
  • Li J, Lu W, Yan Y & Chou T W, J Mater Chem A, 5 (2017) 11271.
  • Li W C, Mak C L, Kan C W & Hui C Y, RSC Adv, 4 (2014) 64890.
  • Yin Y, Liu C & Fan S, J Phys Chem C, 116 (2012) 26185.

Abstract Views: 66

PDF Views: 62




  • Applications of Carbon Nanotubes in Energy Storage Devices

Abstract Views: 66  |  PDF Views: 62

Authors

K Kanagamani
Department of Chemistry, SNS College of Technology, Coimbatore, Tamil Nadu, India
P Geethamani
Department of Chemistry, KGISL Institute of Technology, Coimbatore, Tamil Nadu, India
P Muthukrishnan
Department of chemistry, Faculty of Engineering Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India

Abstract


The development of carbon nanotubes (CNTs) has contributed to the advancement in science and technology. If CNTs could be properly engineered, they can pave the way for the future development of numerous additional materials for a variety of purposes. The open and enriched chiral structure of CNTs enabled improvements in the properties and performances of other materials, when CNTs are incorporated in them. Depending on the structural and morphological requirements, CNTs have been incorporated in energy storage systems either as an additive to improve the electronic conductivity of cathode materials or as an active anode component. Furthermore, they have also been used directly as the electrode material in supercapacitors and fuel cells. Therefore, demand for CNTs is increasing due to their underlying properties and prospective applications in the energy storage research fields. Different types of CNTs are used in energy storage devices such as batteries, supercapacitors, fuel cells, and other devices. This chapter focuses on the review of CNTs in various energy conversion and storage systems, how their morphology and structure affect the electrochemical capabilities and energy storage methods.

Keywords


Carbon Nanotubes, Synthesis, Energy Storage Applications.

References