Open Access Open Access  Restricted Access Subscription Access

Multiphase Pyrolysis of Waste Expanded Polystyrene and In-Situ Hydrogenation of Pyrolysis Oil on Silica-Alumina Supported Nickel Catalyst for the Production of Fuel Range Paraffinic and Aromatic Hydrocarbons


Affiliations
1 Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
 

In this work, thermal and catalytic pyrolysis of waste expanded polystyrene (WEPS) have been investigated in a laboratory designed semi-batch reactor in the temperature range of 400-700℃ and heating rate of 15 ℃/min to produce gasoline range lower paraffins and valuable aromatics i.e., benzene, toluene and ethylbenzene (BTE). Three different type of reactor arrangements i.e., liquid phase/A-type, vapour phase/B-type and multiphase/AB-type have been used to conduct the catalytic pyrolysis of WEPS using nickel on silica-alumina catalyst. The thermal pyrolysis of WEPS produced highest liquid yield of 94.37 wt.% at a temperature of 650°C and heating rate of 15°C/min, whereas, liquid phase/A-type, vapour phase/B-type and multiphase/AB-type catalytic pyrolysis produced highest liquid yield of 88.54 wt.%, 83.21 wt.%, and 81.15 wt.%, respectively, at the same heating rate of 15°C/min and at the temperature of 600°C, 550°C, and 550°C, respectively. The pyrolysis oil obtained from thermal pyrolysis mainly contains styrene monomer of 84.74 wt.% and very less BTE content of 11.38 wt.%. Among, the all types of catalytic pyrolysis, AB-type/multiphase pyrolysis produced pyrolysis oil with highest amount of BTE content of 28.56 wt.%. Furthermore, the pyrolysis oil obtained from A-type, B-type and AB-type catalytic pyrolysis contains low styrene content of 69.94 wt.%, 65.67 wt.% and 55.55 wt.%, respectively, as compared to thermal pyrolysis (84.74 wt.%).

Keywords

WEPS, Nickel on Silica-Alumina, Multiphase, In-Situ Hydrogenation.
User
Notifications
Font Size

  • Miandad R, Rehan M, Barakat M A, Aburiazaiza A S, Khan H, Ismail I M, Dhavamani J, Gardy J, Hassanpour A & Nizami A S, Front Energy Res, 7 (2019) 27.
  • Ma C, Yu J, Wang B, Song Z, Xiang J, Hu S, Su S & Sun L, Fuel Process Technol, 155 (2017) 32.
  • Zhuo C & Levendis Y A, J Appl Polym Sci, 131 (2014) 39931.
  • Zhang Y, Duan D, Lei H, Villota E & Ruan R, Appl Energy, 251 (2019) 113337.
  • Kasar P, Sharma D K & Ahmaruzzaman M, J Clean Prod, 265 (2020) 121639.
  • Mohapatra S S, Rath M K, Singh R K & Murugan S, Fuel, 298 (2021) 120813.
  • Sharuddin S D, Abnisa F, Daud W M & Aroua M K, Energy Convers Manag, 115 (2016) 308.
  • Martín-Lara M A, Piñar A, Ligero A, Blázquez G & Calero M, Water, 13 (2021) 1188.
  • Sharma B K, Moser B R, Vermillion K E, Doll K M & Rajagopalan N, Fuel Process Technol, 122 (2014) 79.
  • Xue F, Takeda D, Kimura T & Minabe M, Polym Degrad Stab, 83 (2004) 461.
  • Hou T S & Luo Y S, Geotech Geol Eng, 38 (2020) 2539.
  • Song Y K, Hong S H, Eo S, Han G M & Shim W J, Environ Sci Technol, 54 (2020) 11191.
  • Shah J & Jan M R, J Taiwan Inst Chem Eng, 45 (2014) 2494.
  • Uttaravalli A N, Dinda S & Gidla B R, Process Saf Environ Prot, 137 (2020) 140.
  • Hong D, Li P, Si T & Guo X, Energy, 218 (2021) 119553.
  • Achilias D S, Kanellopoulou I, Megalokonomos P, Antonakou E & Lappas A A, Macromol Mater Eng, 292 (2007) 923.
  • Liu Y, Qian J & Wang J, Fuel Process Technol, 63 (2000) 45.
  • Aguado R, Olazar M, Gaisán B, Prieto R & Bilbao J, Chem Eng J, 92 (2003) 91.
  • Miandad R, Barakat M A, Aburiazaiza A S, Rehan M & Nizami A S, Process Saf Environ Prot, 102 (2016) 822.
  • Ratnasari D K, Nahil M A & Williams P T, J Anal Appl Pyrolysis, 124 (2017) 631.
  • Gopinath S, Devan P K & Pitchandi K, RSC Adv, 10 (2020) 37266.
  • Ateş F, Miskolczi N & Borsodi N, Bioresour Technol, 133 (2013) 443.
  • Miskolczi N, Wu C & Williams P T, Int J Chem Eng Appl, 8 (2017) 67.
  • Lee S Y, Yoon J H, Kim J R & Park D W, J Anal Appl Pyrolysis, 64 (2002) 71.
  • Rehan M, Miandad R, Barakat M A, Ismail I M, Almeelbi T, Gardy J, Hassanpour A, Khan M Z, Demirbas A & Nizami A S, Int Biodeterior Biodegradation, 119 (2017) 162.
  • Park J J, Park K, Kim J S, Maken S, Song H, Shin H, Park J W & Choi M J, Energy Fuels, 17 (2003) 1576.
  • Verma A, Sharma S & Pramanik H, Waste Manage, 120 (2021) 330.
  • Park K B, Jeong Y S, Guzelciftci B & Kim J S, Appl Energy, 259 (2020) 114240.
  • Wang J L & Wang L L, Energy Sources A: Recovery Util Environ Eff, 33 (2011) 1940.
  • Akubo K, Nahil M A & Williams P T, J Energy Inst, 92 (2019) 195.
  • Langlois G E, Sullivan R F & Egan C J, J Phys Chem, 70 (1966) 3666.
  • Herman S S, Mulyono R P & Budiman A, Presented at 14th Int. Symp. Therapeutic Ultrasound, Indonesia, March, (2017).
  • Busca G, Energies, 14 (2021) 4061.
  • Demirbas A, Balubaid M A, Basahel A M, Ahmad W & Sheikh M H, Pet Sci Technol, 33 (2015) 1190.
  • Davidson C J, Hannigan J H & Bowen S E, Environ Toxicol Pharmacol, 81 (2021) 103518.
  • Villaluenga J G & Tabe-Mohammadi A, J Membr Sci, 169 (2000) 159.
  • Vellingiri K, Kumar P, Deep A & Kim K H, Chem Eng J, 307 (2017) 1116.
  • Verma A, Sharma S & Pramanik H, Int J Energy Res, 46 (2022) 15463.
  • Keshipour S & Kalam Khalteh N, Appl Organomet Chem, 30 (2016) 653.
  • Miller R R, Newhook R & Poole A, Crit Rev Toxicol, 24 (1994) S1.
  • Biswal B, Kumar S & Singh R K, J Waste Manag, 2013 (2013) 1.
  • Gaurh P & Pramanik H, Indian J Chem Technol, 27 (2021) 375.
  • Singh R K, Ruj B, Sadhukhan A K & Gupta P, J Energy Inst, 92 (2019) 1647.
  • Anene A F, Fredriksen S B, Sætre K A & Tokheim L A, Sustainability, 10 (2018) 3979.
  • Nisar J, Ali G, Shah A, Iqbal M, Khan R A, Anwar F, Ullah R & Akhter M S, Waste Manag, 88 (2019) 236.
  • Artetxe M, Lopez G, Amutio M, Barbarias I, Arregi A, Aguado R, Bilbao J & Olazar M, Waste Manage, 45 (2015) 126.
  • Wang J, Jiang J, Sun Y, Zhong Z, Wang X, Xia H, Liu G, Pang S, Wang K, Li M & Xu J, Energy Convers Manag, 200 (2019) 112088.
  • Inayat A, Klemencova K, Grycova B, Sokolova B & Lestinsky P, Waste Manag Res, 39 (2021) 260.
  • Marczewski M, Kamińska E, Marczewska H, Godek M, Rokicki G & Sokołowski J, Appl Catal B Environ, 129 (2013) 236.
  • Onwudili J A, Insura N & Williams P T, J Anal Appl Pyrolysis, 86 (2009) 293.
  • Lopez A, De Marco I, Caballero B M, Adrados A & Laresgoiti M F, Waste Manag, 31 (2011) 1852.
  • Mendes G & Barbeira P J, Fuel, 112 (2013) 163.
  • Bruno T J, Ind Eng Chem Res, 45 (2006) 4371.
  • Rannaveski R, Listak M & Oja V, Oil Shale, 35 (2018) 254.
  • Al-Dahhan W H, Al-Nahrain J Sci, 19 (2016) 18.
  • Harries M E, Kunwar B, Sharma B K & Bruno T J, Energy Fuels, 30 (2016) 9671.
  • Budsaereechai S, Hunt A J & Ngernyen Y, RSC Adv, 9 (2019) 5844.
  • Coates J, Interpretation of infrared spectra, a practical approach. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, John Wiley & Sons, UK: Chichester, (2006).
  • Lam S S, Russell A D, Lee C L & Chase H A, Fuel, 92 (2012) 327.
  • Dutta R, Sarkar U & Mukherjee A, Fuel, 116 (2014) 794.
  • Pramanik H & Gaurh P, Indian J Chem Technol, 25 (2019) 336.
  • Sonawane Y B, Shindikar M R & Khaladkar M Y, Nat Environ Pollut Technol, 16 (2017) 879.
  • Yang Y, Brammer J G, Samanya J, Hossain A K & Hornung A, Energy, 62 (2013) 269.
  • Alhassan Y, Kumar N & Bugaje I M, J Energy Inst, 89 (2016) 683.
  • Shakirullah M, Ahmad W, Ahmad I & Ishaq M, Fuel process Technol, 91 (2010) 1736.
  • Fu J, Fuel, 241 (2019) 892.
  • Chen Q, He Y, Wang X, Zhou T, Ding C & Wang J, Fire Mater, 42 (2018) 805.
  • Mukhraiya V, Yadav R K & Raikawar B, Int J Mech Eng Technol, 6 (2015) 12.
  • Ahmad W, Ahmad I, Ishaq M & Ihsan K, Arab J Chem, 10 (2017) S3263.
  • Rezvanipour M, Alikhani H F & Pazouki M, Iran J Chem Eng, 11 (2014) 10.
  • Zayoud A, Thi H D, Kusenberg M, Eschenbacher A, Kresovic U, Alderweireldt N, Djokic M & Van Geem K M, Waste Manage, 139 (2022) 85.

Abstract Views: 131

PDF Views: 92




  • Multiphase Pyrolysis of Waste Expanded Polystyrene and In-Situ Hydrogenation of Pyrolysis Oil on Silica-Alumina Supported Nickel Catalyst for the Production of Fuel Range Paraffinic and Aromatic Hydrocarbons

Abstract Views: 131  |  PDF Views: 92

Authors

Anjali Verma
Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
Hiralal Pramanik
Department of Chemical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India

Abstract


In this work, thermal and catalytic pyrolysis of waste expanded polystyrene (WEPS) have been investigated in a laboratory designed semi-batch reactor in the temperature range of 400-700℃ and heating rate of 15 ℃/min to produce gasoline range lower paraffins and valuable aromatics i.e., benzene, toluene and ethylbenzene (BTE). Three different type of reactor arrangements i.e., liquid phase/A-type, vapour phase/B-type and multiphase/AB-type have been used to conduct the catalytic pyrolysis of WEPS using nickel on silica-alumina catalyst. The thermal pyrolysis of WEPS produced highest liquid yield of 94.37 wt.% at a temperature of 650°C and heating rate of 15°C/min, whereas, liquid phase/A-type, vapour phase/B-type and multiphase/AB-type catalytic pyrolysis produced highest liquid yield of 88.54 wt.%, 83.21 wt.%, and 81.15 wt.%, respectively, at the same heating rate of 15°C/min and at the temperature of 600°C, 550°C, and 550°C, respectively. The pyrolysis oil obtained from thermal pyrolysis mainly contains styrene monomer of 84.74 wt.% and very less BTE content of 11.38 wt.%. Among, the all types of catalytic pyrolysis, AB-type/multiphase pyrolysis produced pyrolysis oil with highest amount of BTE content of 28.56 wt.%. Furthermore, the pyrolysis oil obtained from A-type, B-type and AB-type catalytic pyrolysis contains low styrene content of 69.94 wt.%, 65.67 wt.% and 55.55 wt.%, respectively, as compared to thermal pyrolysis (84.74 wt.%).

Keywords


WEPS, Nickel on Silica-Alumina, Multiphase, In-Situ Hydrogenation.

References