Open Access Open Access  Restricted Access Subscription Access

Investigation of Laurus Tamala Leaves Extract as an Environmentally Acceptable Corrosion Inhibitor for Soft Steel in 1M HCl: Electrochemical, DFT, and Surface Characterization Techniques


Affiliations
1 Department of Chemistry, Karnatak Science College, Dharwad-580001, India
2 Department of Chemistry, KLE Technological University, Hubballi-580 031, India
 

Laurus Tamala leaves extract (LTLE) has been employed as a soft steel corrosion inhibitor in a 1M Hydrochloric acid media. Chemical (weight loss) and electrochemical investigations were carried out to assess the corrosion rate and percentage inhibition efficiency of the extract. The electrochemical polarization results have demonstrated that plant leaves extract functions as a mixed type inhibitor. The stability of the inhibitor is tested at elevated temperatures by weight loss method. The corrosion inhibition mechanism is interpreted through adsorption mechanism, and the LTLE components has obeyed the Langmuir adsorption isotherm for soft steel. The interaction of the components of the extract is assessed through FT-IR technique. The surface morphology, roughness and hydrophobicity in presence and absence of the extract have been characterized through SEM, AFM and water contact angle techniques respectively. The highest inhibitory efficiency is 96.21% for 24 h as recorded by weight loss method. Additionally, the DFT computations has revealed the inhibitor’s adsorption through electron donor-acceptor interactions.

Keywords

Laurus Tamala Leaves Extract, Soft Steel, Corrosion Inhibitor, Tafel Plots.
User
Notifications
Font Size

  • Verma D K, Kazi M, Alqahtani M S, Syed R, Berdimurodov E, Kaya S, Salim R, Asatkar A & Haldhar R, J Mol Struct, 1241 (2021) 130648.
  • Haque J, Verma C, Srivastava V & Nik W W, Int J Electrochem Sci, 8 (2013) 7138.
  • Kairi N I & Kassim J, Int J Electrochem Sci, 8 (2013) 7138.
  • Qiang Y, Zhang S, Tan B & Chen S, Corros Sci, 133 (2018) 6.
  • Alibakhshi E, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B, Mahdavian M & Motamedi M, J Mol Liq, 255 (2018) 185.
  • Shetty S D, Shetty P & Nayak H V S, J Serb Chem Soc, 71 (2006) 1073.
  • Wang H, Fan H & Zheng J, Mater Chem Phys, 77 (2002) 655.
  • Hmimou J, Rochdi A, Touir R, Touhami M E, Rifi E H, Hallaoui A E, Anouar A & Chebab D, J Mater Environ Sci, 3 (2012) 543.
  • Praveen B M & Venkatesha T V, Int J Electrochem Sci, 4 (2013) 267.
  • Leelavathi S & Rajalakshmi R, J Mater Environ Sci, 4 (2013) 625.
  • Bentiss F, Traisnel M & Lagrenee M, Corros Sci, 42 (2000) 127.
  • Arab S T & Noor E A, Corros Sci, 49 (1993) 122.
  • Ramananda S M, J Mater Environ Sci, 4 (2012) 119.
  • Taleb H, Ibrahim & Mohamed A Z, Int J Electrochem Sci, 6 (2012) 6442.
  • Tiwari P, Srivastava M, Mishra R, Ji G & Plakasi R, J Environ Chem Eng, 6 (2018) 4773.
  • Rani A J, Thomas A & Joseph A, J Mol Liq, 334 (2021) 116515.
  • Rathod M R, Rajappa S K, Praveen B M & Bharath D K, Curr Green Sust Chem, 4 (2021) 100113.
  • Wang Q, Tan B, Bao H, Xie Y, Mou Y, Li P & W Yang, Bioelectrochemistry, 128 (2019) 49.
  • Fekkar G, Yousfi F, Elmsellem H, Aiboudi M, Ramdani M, Abdel-Rahman I & Bouyazza L, Int J Corros Scale Inhib, 9 (2020) 446.
  • Sedik A, Lerari D, Salci A, Athmani S, Bachari K, Gecibesler H I & Solmaz R, J Taiwan Inst Chem Eng, 107 (2020) 189.
  • Haque J, Verma C, Srivastava V & Nik W W, Sustain Chem Pharm, 19 (2021) 100354.
  • Fadhil A A, Khadom A A, Ahmed S K, Liu H, Fu C & Mahood H B, Surf Interfaces, 20 (2020) 100595.
  • Thomas A, Praiila M, Shainy K M & Joseph A, J Mol Liq, 312 (2020) 113369.
  • Ojha L K, Tuzun B & Bhawsar J, J Bio Tribo Corros, 6 (2020) 1.
  • Akalezi C O & Oguzie E E, Int J Ind Chem, 7 (2016) 81.
  • Rathod M R, Rajappa S K & Kittur A A, Mater Today: Proc, 54 (2022) 786.
  • Kumar S, Sharma S & Vasudeva N, Asian Pac J Trop Dis, 2 (2012) 761.
  • Sharma V & Rao L J M, Crit Rev Food Sci Nutr, 54 (2014) 433.
  • Vimala J R, Rose A L & Raja S, Der Chemica Sinica, 3 (2012) 582.
  • Shaikh J R & Patil M K, Int J Chem Stud, 8 (2020) 603.
  • Zhang W, Li H, Wang Y, Liu Y, Gu Q & Wu Y, New J Chem, 42 (2018) 12649.
  • Hsissou R, About S, Seghiri R, Rehioui M, Berisha A, Erramli H, Assouag M & Elharfi A, J Mater Res Technol, 9 (2020) 2691.
  • Merah S, Larabi L, Benali O & Harek Y, Pigm Resin Technol, 37 (2008) 291.
  • Fouda A S, Ibrahim H, Rashwaan S, El-Hossiany A & Ahmed R M, Int J Electrochem Sci, 13 (2018) 6327.
  • Sasikala T, Parameswari K, Chitra S & Kiruthika A, Measurement, 101 (2017) 175.
  • Rathod M R & Rajappa S K, Electrochem Sci Adv, (2021) e2100059.
  • Prasanna B M, Praveen B M, Hebbar N, Venkatesha T V & Tandon H C, Int J Ind Chem, 7 (2016) 9.
  • Ituen E B, Akaranta O, James A O & Shuangqin S, J Chem Mater Res, 5 (2016) 45.
  • Singh A K & Ebenso E E, Int J Electrochem Sci, 7 (2012) 2349.
  • Haldhar R, Prasad D, Nguyen L T D, Kaya S, Bahadur I, Dagdag O & Kim S, Mater Chem Phys, 267 (2021) 124613.
  • Rathod M R & Rajappa S K, Electrochem Sci Adv, 2 (2021) e2100080.
  • Martinez S & Matikos-Hukovic M, J Appl Electrochem, 33 (2003) 1137.
  • Ostovari A, Hoseinieh S M, Peikari M, Shadizadeh S R & Hashemi S J, Corros Sci, 5 (2009) 1935.
  • Ahamad I, Prasad R & Quraishi M A, J Solid State Electrochem, 14 (2010) 2095.
  • Dandia A, Gupta S L, Singh P & Quraishi M A, ACS Sustain Chem Eng, 1 (2013) 1303.
  • Langmuir I, J Am Chem Soc, 38 (1916) 2221.
  • Zarrouk A, Hammouti B, Dafali A, Bentiss F & Oujda M, Ind Eng Chem Res, 52 (2013) 2560.
  • Solomon M M, Umoren S A, Udosoro I I & Udoh A P, Corros Sci, 52 (2010) 1317.
  • Outirite M, Lagrenee M, Lebrini M, Traisnel M, Jama C, Vezin H & Bentiss F, Electrochim Acta, 55 (2010) 1670.
  • Rathod M R, Minagalavar R L & Rajappa S K, J Indian Chem Soc, 99 (2022) 100445.
  • Devendra B K, Praveen B M, Tripathi V S, Nagaraju G, Nagaraju D H & Nayana K O, Inorg Chem Commun, 134 (2021) 109065.
  • Kalkhambkar A G, Rajappa S K, Manjanna J & Malimath G H, J Indian Chem Soc, 99 (2022) 100639
  • Guruprasad A M, Sachin H P, Swetha G A, Prasanna B M & Sudheerkumar K H, J Bio Tribo Corros, 4 (2018) 57.
  • Rathod M R, Rajappa S K, Minagalavar R L, Praveen B M, Devendra B K & Kittur A A, Inorg Chem Commun, 140 (2022) 109488.
  • Ekemini I, Victor M & Ekere E, Colloids Surf A, 578 (2019) 123597.
  • Dehghani A, Bahlakeh G, Ramezanzadeh B & Ramezanzadeh M, J Taiwan Inst Chem Eng, 102 (2019) 349.
  • Su H, Wang L, Wu Y & Zhang Y, Corr Sci, 165 (2020) 108410.
  • Qiang Y, Zhang S, Guo L & Zheng X, Corr Sci, 119 (2017) 68.
  • Obot I B, Macdonald D D & Gasem Z M, Corr Sci, 99 (2015) 1.
  • Madkour L H, Kaya S, Kaya C & Guo L, J Taiwan Inst Chem Eng, 68 (2016) 461.
  • Huang H & Bu F, Corr Sci, 165 (2020) 108413.
  • Haddadi S A, Alibakhshi E & Bahlakeh G, J Mol Liq, 284 (2019) 682.
  • Hu S, Jia X & Hu J, J China Univ Petrol, 35 (2011) 146.
  • Kalkhambkar A G, Rajappa S K, Manjanna J & Malimath G H, Inorg Chem Commun, 143 (2022) 109799.
  • Sanaei Z, Ramezanzadeh M, Bahlakeh G & Ramezanzadeh B, J Ind Eng Chem, 69 (2019) 18.
  • Bahlakeh G, Dehghani A, Ramezanzadeh B & Ramezanzadeh M, J Mol Liq, 294 (2019) 111550.

Abstract Views: 122

PDF Views: 81




  • Investigation of Laurus Tamala Leaves Extract as an Environmentally Acceptable Corrosion Inhibitor for Soft Steel in 1M HCl: Electrochemical, DFT, and Surface Characterization Techniques

Abstract Views: 122  |  PDF Views: 81

Authors

Ragini L Minagalavar
Department of Chemistry, Karnatak Science College, Dharwad-580001, India
S K Rajappa
Department of Chemistry, Karnatak Science College, Dharwad-580001, India
Manohar R Rathod
Department of Chemistry, Karnatak Science College, Dharwad-580001, India
Ashok M Sajjan
Department of Chemistry, KLE Technological University, Hubballi-580 031, India

Abstract


Laurus Tamala leaves extract (LTLE) has been employed as a soft steel corrosion inhibitor in a 1M Hydrochloric acid media. Chemical (weight loss) and electrochemical investigations were carried out to assess the corrosion rate and percentage inhibition efficiency of the extract. The electrochemical polarization results have demonstrated that plant leaves extract functions as a mixed type inhibitor. The stability of the inhibitor is tested at elevated temperatures by weight loss method. The corrosion inhibition mechanism is interpreted through adsorption mechanism, and the LTLE components has obeyed the Langmuir adsorption isotherm for soft steel. The interaction of the components of the extract is assessed through FT-IR technique. The surface morphology, roughness and hydrophobicity in presence and absence of the extract have been characterized through SEM, AFM and water contact angle techniques respectively. The highest inhibitory efficiency is 96.21% for 24 h as recorded by weight loss method. Additionally, the DFT computations has revealed the inhibitor’s adsorption through electron donor-acceptor interactions.

Keywords


Laurus Tamala Leaves Extract, Soft Steel, Corrosion Inhibitor, Tafel Plots.

References