Open Access Open Access  Restricted Access Subscription Access

Enhanced Electrochemical Performance of Manganese Oxide Nanocomposites for Supercapacitor Application


Affiliations
1 PG & Research Department of Chemistry, National College (autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620001, Tamil Nadu, India
 

Manganese oxide (MO) has been synthesised by chemical co-precipitation method and it was characterised for its functional group, phase structure, particle size and morphology by using FTIR, XRD, SEM and TEM. Additionally, its electrochemical properties like cyclic voltammetry (CV), galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) are recorded. The specific capacitance of the prepared manganese oxide is found to be 116 F/g at current density of 1 A/g. To augment its capacitance value, it was doped with multi-walled carbon nanotube (MWCNT) and poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and their electrochemical performance are recorded. By doping MWCNT and PEDOT:PSS over MO, a high specific capacitance of 537 F/g at a current density of 1 A/g with 97% capacitance retention and coulombic efficiency of 98% over 10,000 cycles at a current density of 5 A/g is obtained. All these results demonstrates that MO/MWCNT/PEDOT:PSS is a promising electrode material for supercapacitor application.

Keywords

Chemical Co-Precipitation, Manganese Oxide, MWCNT, PEDOT:PSS, Supercapacitor, Energy Storage.
User
Notifications
Font Size

  • Wenhua Z, Ruizhi L, Cheng Z, Yuanyuan L, Jianlong X & Jinping L, Adv Sci, 4 (2017) 1600539.
  • Rudra K, Prabhakar R & Ashutosh S, J Mater Chem A, 4 (2016) 9822.
  • Conway B E, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Acedamic/Plenum Publishers, New York, (1999).
  • Miller J R & Simon P, Science, 321 (2008) 651.
  • Young S Y, Se Y C, Jinyong S, Byung H K, Sung-Jin C, Seung J B, Yun S H, Yongsug T, Yung W P, Sungjin P & Hyoung-Joon J, Adv Mater, 25 (2013) 11.
  • Yong Z, Hui F, Xingbing W, Lizhen W, Aiqin Z, Tongchi X, Huichao D, Xiaofeng L & Linsen Z, Int J Hydrog Energy, 34 (2009) 4889.
  • Songhun Y, Jinwoo L, Taeghwan H & Seung M, J Electrochem Soc, 147 (2000) 2507.
  • Jagdees P, Ashwani K S, Jyoti S, Kotnala R K & Kedar S, Mater Res Express, 5 (2018) 055028.
  • Wencui L, Reichenauer G & Fricke J, Carbon, 40 (2002) 2955.
  • Wei C, Zhongli F, Lin G, Xinhe B & Chunlei W, Chem Commun, 46 (2010) 3905.
  • Weifeng W, Xinwei C, Weixing & Ivey D G, Chem Soc Rev, 40 (2011) 1697.
  • Simon P & Gogotsi Y, Nat Mater, 7 (2008) 845.
  • Hui X, Ying S M, Guoliang Y, Chong C & Li L, Electrochem Solid-State Lett, 15 (2012) A60.
  • Sun I K, Jung-Soo L, Hyo-Jin A, Hyun-Kon S & Ji H, ACS Appl Mater Interfaces, 5 (2013) 1596.
  • Kulal P M, Dubal D P, Lokhande C D & Fulari V J, J Alloys Compd, 509 (2011) 2567.
  • Wei T, Lili L, Shu T, Lei L, Yunbo Y, Yuping W & Kai Z, Chem Commun, 47 (2011) 10058.
  • Santosh J U, Chaudhari G N, Bodade A B & Mardikar S P, Mater Sci Energy Technol, 3 (2020) 289.
  • Na L, Yinghong X, Chongzheng X, Huihui L & Xiaodi Y, Int J Electrochem Sci, 8 (2013) 1181.
  • Yang H, Hongfei L, Zifeng W, Minshen Z, Zengxia P, Qi X, Yan H & Chunyi Z, Nano Energy, 22 (2016) 422.
  • Xing G, Lei Z, Xiaomin C, Ce L, Huiqin L, Yang L, Xiaodong W & Xiuguo C, Nanomaterials, 8 (2018) 335.
  • Mathieu T & Thierry B D B, Chem Mater, 16 (2004) 3184.
  • Yong Z, Hui F, Xingbing W, Lizhen W, Aiqin Z, Tongchi X, Huichao D, Xiaofeng L & Linsen Z, Int J Hydrog Energy, 34 (2009) 4889.
  • Ming H, Fei L, Fan Dong, Yu Xin Z & Li Z, J Mater Chem A, 3 (2015) 21380.
  • Banafsheh B & Ivey D G, J Power Sources, 196 (2011) 10762.
  • Yongchuan L, Dawei H, Jiahua D, Yongsheng W & Shulei L, Mater Chem Phys, 147 (2014) 141.
  • Dawoud H D, Tahtamouni T A & Bensalah N, Int J Energy Res, 43 (2019) 1.
  • Reddy R N & Reddy R G, J Power Sources, 124 (2003) 330.
  • Xingyan W, Xianyou W, Weiguo H, Sebastian P J & Gamboa S, J Power Sources, 140 (2005) 211.
  • Mathieu T, Thierry B & Belanger D, Chem Mater, 14 (2002) 3946.
  • Prasada R T, Kumar A, Naik V M & Naik R, J Alloys Compd, 789 (2019) 518.
  • Subramanian V, Zhu H, Robert V, Ajayan P M & Wei B, J Phys Chem B, 109 (2005) 20207.
  • Tang X, Li H, Liu Z H, Yang Z & Wang Z, J Power Sources, 196 (2011) 855.
  • Shuijin L, Kaibin T, Zhen F, Qiangchun L & Huagui Z, Mater Lett, 60 (2006) 53.
  • Chang Y Q, Yu D P, Long Y, Xu J, Luo X H & Ye R C, J Cryst Growth, 279 (2005) 88.
  • Banis M N, Zhang Y, Banis H N, Li R, Sun X, Jiang X & Nikanpour D, Chem Phys Lett, 501 (2011) 470.
  • Fan X , Wang X, Li G, Yu A & Chen Z, J Power Sources, 326 (2016) 357.
  • Mishra P K,Prajapati C S, Shahi R R, Kushwaha A K & Sahay P P, Ceram Int, 44 (2018) 5710.
  • Sahoo B & Panda P K, J Adv Ceram, 2 (2013) 26.
  • Yang J, Lian L, Ruan H, Xie F & Wei M, Electrochim Acta, 136 (2014) 189.
  • Majid S R, Solid State Ion, 262 (2014) 220.
  • Davoglio R A,Cabello G, Marco J F & Biaggio S R, Electrochim Acta, 261 (2018) 428.
  • Zhao X, Hou Y, Wang Y, Yang L, Zhu L, Cao R & Sha Z, RSC Adv, 7 (2017) 40286.
  • Subramanian V, Zhu H & Wei B, J Power Sources, 159 (2006) 361.
  • Huang Y, Weng D, Kang S & Lu J, J Nanosci Nanotechnol, 20 (2020) 4815.
  • Gowda J I, Hanabaratti R M & Hipparagi S S, Results Chem, 5 (2023) 100801.
  • Gowda J I, Hanabaratti R M, Pol P D, Sheth R C, Joshi P P & Nandibewoor S T, Chem Data Collect, 38 (2022) 100824.
  • Chen H & He J, J Phys Chem C, 112 (2008) 17540.
  • Mylarappa M, Lakshmi V V, Mahesh K V, Nagaswarupa H P & Raghavendra N, IOP Conf Ser: Mater Sci Eng, 149 (2016) 012178.
  • Kumar Y, Chopra S, Gupta A, Kumar Y, Uke S J & Mardikar S P, Mater Sci Energy Technol, 3 (2020) 566.
  • Zheng M, Zhang H, Gong X, Xu R, Xiao Y, Dong H, Liu H & Liu Y, Nanoscale Res Lett, 8 (2013) 166.
  • Manigandan R, Suresh R, Giribabu K, Vijayalakshmi L, Stephen A & Narayanan V, AIP Conf Proc, 1576 (2014) 125.
  • Murty B S, Shankar P, Raj B , Rath B B & Murday J, Textbook of Nanoscience and Nanotechnology, First edition, (Universities Press Private Limited, India), 2013.
  • Singu B S, Goda E S & Yoon K R, J Ind Eng Chem, 97 (2021) 239.
  • Chen W, Fan Z, Gu L, Bao X & Wang C, Chem Commun, 46 (2010) 3905.
  • Sonia T S, Mini P A,Nandhini R, Sujith K, Avinash B, Nair S V & Subramanian K R V, Bull Mater Sci, 36 (2013) 547.
  • Gnana S R B, Asiri A M, Wu J J & Anandan S, J Alloys Compds, 636 (2015) 234.
  • Bui P T M, Song J H, Li Z Y, Shaheer A M & Yang O B, J Alloys Compds, 694 (2017) 560.
  • Tan D Z W, Cheng H, Nguyen S T & Duong H M, Adv Funct Mater, 29 (2014) A107.
  • Li L, Zhong A H, Ning A, Yu Y Y, Zhi M L & Hong Y W, J Phys Chem C, 118 (2014) 22865.
  • Wang H, Peng C, Peng F, Yu H & Yang J, Mater Sci Eng B, 176 (2011) 1073.
  • Huang Y, Weng D, Kang S & Lu J, J Nanosci Nanotechnol, 20 (2020) 4815.
  • Ko I H, Kim S J, Lim J, Yu S H, Ahn J, Lee J K & Sung Y E, Electrochim Acta, 187 (2016) 340.
  • Liu L & Choi S, ACS Appl Energy Mater, 3 (2020) 10224.

Abstract Views: 46

PDF Views: 26




  • Enhanced Electrochemical Performance of Manganese Oxide Nanocomposites for Supercapacitor Application

Abstract Views: 46  |  PDF Views: 26

Authors

K. Kiruthika
PG & Research Department of Chemistry, National College (autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620001, Tamil Nadu, India
V. Renuga
PG & Research Department of Chemistry, National College (autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620001, Tamil Nadu, India

Abstract


Manganese oxide (MO) has been synthesised by chemical co-precipitation method and it was characterised for its functional group, phase structure, particle size and morphology by using FTIR, XRD, SEM and TEM. Additionally, its electrochemical properties like cyclic voltammetry (CV), galvanostatic charge/ discharge and electrochemical impedance spectroscopy (EIS) are recorded. The specific capacitance of the prepared manganese oxide is found to be 116 F/g at current density of 1 A/g. To augment its capacitance value, it was doped with multi-walled carbon nanotube (MWCNT) and poly(3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and their electrochemical performance are recorded. By doping MWCNT and PEDOT:PSS over MO, a high specific capacitance of 537 F/g at a current density of 1 A/g with 97% capacitance retention and coulombic efficiency of 98% over 10,000 cycles at a current density of 5 A/g is obtained. All these results demonstrates that MO/MWCNT/PEDOT:PSS is a promising electrode material for supercapacitor application.

Keywords


Chemical Co-Precipitation, Manganese Oxide, MWCNT, PEDOT:PSS, Supercapacitor, Energy Storage.

References