Open Access Open Access  Restricted Access Subscription Access

Removal of Methylene Blue Dye from Aqueous Media by Adsorption Using Nickel Oxide Modified Montmorillonite Composite


Affiliations
1 Université Djilali BOUNAAMA de Khemis-Miliana, Faculté des Sciences et de la Technologie, Route de Theniet El Had, 44225 Khemis-Miliana, Algeria
2 Laboratoire Sciences et Techniques de l'Environnement, Ecole Nationale Polytechnique d'Alger, BP 182, El Harrach, Alger, Algeria
3 Laboratoire de Génie Chimique, Département de Génie des procédés, Faculté de Technologie, Université Saad Dahleb-Blida 1, BP270-09000-Blida, Algeria
 

In this study, the adsorptive removal of methylene blue (MB) from aqueous solutions onto nickel oxide (NiO) modified montmorillonite (NiO-Mt) has been studied and compared with that of commercial bentonite. The influences of various experimental factors such as contact time, adsorbent dosage, pH of solution, initial dye concentration and temperature have been investigated. Batch adsorption studies has manifested that the maximum adsorption capacity of MB is around 99.9 mg/g in 10 min with 25 mg adsorbent mass at an initial concentration of 100 mg/L at ambient temperature of 25°C and natural pH of solution (pH = 5.8 for NiO-Mt and pH = 6.3 for commercial bentonite). The adsorption kinetics and isotherms are well fitted by pseudo-second order and Langmuir models, respectively. The thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy are determined. The MB adsorption is physical, spontaneous and exothermic for both adsorbents.

Keywords

Adsorption, Isotherms, Kinetics, Methylene Blue, NiO-Mt, Thermodynamics.
User
Notifications
Font Size

  • Şahin Ö, Kaya M & Saka C, Appl Clay Sci, 116 (2015) 46.
  • Pandey R L M, Appl Clay Sci, 169 (2019) 102.
  • Huang Z, Li Y, Chen W, Shi J, Zhang N, Wang X, Li Z, Gao L & Zhang Y, Mater Chem Phys, 202 (2017) 266.
  • Fan S, Wang Y, Wang Z, Tang J, Tang J & Li X, J Environ Chem Eng, 5 (2017) 601.
  • Hassan A F & Elhadidy H, J Environ Chem Eng, 5 (2017) 955.
  • Hassan A F, Abdel-Mohsen A M & Moustafa M G F, Carbohydr Polym, 102 (2014) 192.
  • Pathania D, Sharma S & Singh P, Arab J Chem, 10 (2017) S1445.
  • Li X, Wang S, Liu Y, Jiang L, Song B, Li M, Zeng G, Tan X, Cai X & Ding Y, J Chem Eng Data, 62 (2017) 407.
  • De Castro M L F A, Abad M L B, Sumalinog D A G, Abarca R R M, Paoprasert P & De Luna M D G, Sust Environ Res, 28 (2018) 197.
  • Abuhatab S, El-Qanni A, Al-Qalaq H, Hmoudah M & Al-Zerei W, J Environ Manage, 268 (2020) 110713.
  • Abidi N, Errais E, Duplay J, Berez A, Jrad A, Schäfer G, Ghazi M, Semhi K & Trabelsi-Ayadi M, J Clean Prod, 86 (2015) 432.
  • Kurniawan A, Sutiono H, Ju Y H, Soetaredjo F E, Ayucitra A, Yudha A & Ismadji S, Microporous Mesoporous Mater, 142 (2011) 184.
  • Hajjaji M & El Arfaoui H, Appl Clay Sci, 46 (2009) 418.
  • Dinçer A R, Güneş Y & Karakaya N, J Hazard Mater, 141 (2007) 529.
  • Aghdasinia H & Asiabi H R, Environ Earth Sci, 77 (2018) 1.
  • Bayram T, Bucak S & Ozturk D, Chem Eng Process: Process Intensif, 158 (2020) 108.
  • Haounati R, Ouachtak H, El Haouti R, Akhouairi S, Largo F, Akbal F, Benlhachemi A, Jada A & Ait Addi A, Sep Purif Technol, 255 (2021) 117335.
  • Jawad A H & Abdulhameed A S, Surf Interfaces, 18 (2020) 100422.
  • Esvandi Z, Foroutan R, Peighambardoust S J, Akbari A & Ramavandi B, Surf Interfaces, 21 (2020) 100754.
  • Ali N, Ali F, Ullah I, Ali Z, Duclaux L, Reinert L, Lévêque J M, Farooq A, Bilal M & Ahmad I, Environ Technol Innov, 19 (2020) 101001.
  • Bueno S, Durán E, Gámiz B & Hermosín M C, J Environ Chem Eng, 9 (2021) 104623.
  • Chaari I, Medhioub M, Jamoussi F & Hamzaoui A H, J Mol Struct, 1223 (2020) 128944.
  • Kadhum S T, Yassen A G & Albayati T M, J Chem Eng, 36 (2021) 19.
  • Ullah R, Jan I F, Ajmal M, Shah A, Akhter M S, Ullah H & Waseem A, Pol J Environ Stud, 29 (2020) 3831.
  • Alorabi A Q, Shamshi H M, Mahboob A M, Zabin S A, Alsenani N I & Essam B N, Nanomater, 11 (2021) 2789.
  • Saeed M, Munir M, Nafees M, Ahmad S S S, Ullah H & Waseem A, Microporous Mesoporous Mater, 291 (2020) 109697.
  • Khalaf H, Bouras O & Perrichon V, Microporous Mesoporous Mater, 8 (1997) 141.
  • Ferro-Garcia M A, Rivera-Utrilla J, Bautista-Toledo I & Moreno-Castilla C, Langmuir, 14 (1998) 1880.
  • Dutta D & Dutta D K, Appl Catal A: Gen, 487 (2014) 158.
  • Boukhatem H, Khalaf H, Djouadi L, Gonzalez F V, Navarro R M, Santaballa J A & Canle Lopez M, Appl Catal B, 211 (2017) 114.
  • Abukhadra M R, Sayed M A, Rabie A M & Ahmed S A, Colloids Surf A, 577 (2019) 583.
  • Rabie A M, Shaban M, Abukhadra M R, Hosney R, Ahmed S A & Negm N A, J Mol Liq, 278 (2019) 224.
  • Lei C, Pi M, Cheng B, Jiang C & Qin J, Appl Surf Sci, 435 (2018) 1002.
  • Niu H, Zhou D, Yang X, Li X, Wang Q & Qu F, J Mater Chem A, 3 (2015) 18413.
  • Motahari F, Mozdianfard M R & Salavati-Niasari M, Process Saf Environ Prot, 93 (2015) 282.
  • Gao X, Mao H, Lu M, Yang J & Li B, Microporous Mesoporous Mater, 148 (2012) 25.
  • Modiba E, Enweremadu C & Rutto H, Chin J Chem Eng, 23 (2015) 281.
  • Xiao J, Peng T, Dai K, Zan L & Peng Z, J Solid State Chem, 180 (2007) 3188.
  • Wang R, Li Q, Xie D, Xiao H & Lu H, Appl Surf Sci, 279 (2013) 129.
  • Jiang Y, Huang T, Dong L, Su T, Li B, Luo X, Xie X, Qin Z, Xu C & Ji H, Catalysts, 8 (2018) 646.
  • Kumar A & Lingfa P, Mater Today: Proc, 22 (2020) 737.
  • Lu X, Gu F, Liu Q, Gao J, Liu Y, Li H, Jia L, Xu G, Zhong Z & Su F, Fuel Process Technol, 135 (2015) 34.
  • Farzaneh F & Haghshenas S, Mater Sci Appl, 3 (2012) 697.
  • Meng B, Guo Q, Men X, Ren S, Jin W & Shen B, J Saudi Chem Soc, 24 (2020) 334.
  • Atta A M, Al-Lohedan H A, Al Othman Z A, Abdel-Khalek A A & Tawfeek A M, J Ind Eng Chem, 31 (2015) 374.
  • Chang J, Ma J, Ma Q, Zhang D, Qiao N, Hu M & Ma H, Appl Clay Sci, 119 (2016) 132.
  • Fan H, Zhou L, Jiang X, Huang Q & Lang W, Appl Clay Sci, 95 (2014) 150.
  • Zhou Q, Gao Q, Luo W, Yan C, Jia Z & Duan P, Colloids Surf A : Physicochem Eng Asp, 470 (2015) 258.
  • Ho Y S & McKay G, Trans I Chem E Part B, 76 (1998) 183.
  • Ho Y S & McKay G, Process Biochem, 34 (1999) 451.
  • Abbad B & Lounis A, Desalin Water Treat, 52 (2014) 7766.
  • Pandimurugan R & Thambidurai S, J Environ Chem Eng, 4 (2016) 1332.
  • Akpomie K G, Dawodu F A & Adebowale K O, Alex Eng J, 54 (2015) 757.
  • Narine D R & Guy R D, Clays Clay Miner, 29 (1981) 205.
  • Bilgic C, J Colloid Interface sci, 281 (2005) 33.
  • Rezala H, Douba H, Boukhatem H & Romero A, J Chem Soc Pak, 42 (2020) 550.
  • Sun Y, Wu Z Y, Wang X, Ding C, Cheng W, Yu S H & Wang X, Environ Sci Technol, 50 (2016) 4459.
  • Ebrahim S E, Sulaymon A H & Saad A H, Desalin Water Treat, 57 (2016) 20915.
  • Tarek M E, Uyiosa O A, Kingsley E U, Robert B O, Mohamed A E, Mohamed A H, Safaa R, Otolorin A O & Ahmed E, Biomass Convers Biorefin, (2022).
  • Barka N, Qouzal S, Assabbane A, Noinhan A & Ichou Y A, J Saudi Chem Soc, 15 (2011) 263.
  • Dogan M, Alkan M, Demirbas O, Özdemir Y & Özmetin C, Chem Eng J, 124 (2006) 89.
  • Almeida C A P, Debacher N A, Downs A J, Cottet L & Mello C A D, J Colloid Interface Sci, 332 (2009) 46.
  • Zhang K, Li H, Xu X & Yu H, Microporous Mesoporous Mater, 255 (2018) 7.
  • El-Qanni A, Nassar N N & Vitale G, Chem Eng J, 327 (2017) 666.
  • Baseri J R, Palanisamy P N & Kumar P S, Indian J Chem Technol, 19 (2012) 311.
  • Mohamed E M, Gehan M N, Nabila M E, Heba I B, Sandeep K & Tarek M A, J Ind Eng Chem, 37 (2016) 156.
  • Demirbas A, Sari A & Isldak O, J Hazard Mater, 135 (2006) 226.
  • Leilei L, Feng L, Huimin D, Xiaojiao W, Jianbo L, Yanhui W & Chuannan L, Colloids Surfaces B: Biointerfaces, 141 (2016) 253.

Abstract Views: 34

PDF Views: 12




  • Removal of Methylene Blue Dye from Aqueous Media by Adsorption Using Nickel Oxide Modified Montmorillonite Composite

Abstract Views: 34  |  PDF Views: 12

Authors

H. Boukhatem
Université Djilali BOUNAAMA de Khemis-Miliana, Faculté des Sciences et de la Technologie, Route de Theniet El Had, 44225 Khemis-Miliana, Algeria
N. Ouazene
Laboratoire Sciences et Techniques de l'Environnement, Ecole Nationale Polytechnique d'Alger, BP 182, El Harrach, Alger, Algeria
H. Rezala
Université Djilali BOUNAAMA de Khemis-Miliana, Faculté des Sciences et de la Technologie, Route de Theniet El Had, 44225 Khemis-Miliana, Algeria
L. Djouadi
Laboratoire de Génie Chimique, Département de Génie des procédés, Faculté de Technologie, Université Saad Dahleb-Blida 1, BP270-09000-Blida, Algeria
S. Selami
Université Djilali BOUNAAMA de Khemis-Miliana, Faculté des Sciences et de la Technologie, Route de Theniet El Had, 44225 Khemis-Miliana, Algeria
S. Zeraif
Université Djilali BOUNAAMA de Khemis-Miliana, Faculté des Sciences et de la Technologie, Route de Theniet El Had, 44225 Khemis-Miliana, Algeria

Abstract


In this study, the adsorptive removal of methylene blue (MB) from aqueous solutions onto nickel oxide (NiO) modified montmorillonite (NiO-Mt) has been studied and compared with that of commercial bentonite. The influences of various experimental factors such as contact time, adsorbent dosage, pH of solution, initial dye concentration and temperature have been investigated. Batch adsorption studies has manifested that the maximum adsorption capacity of MB is around 99.9 mg/g in 10 min with 25 mg adsorbent mass at an initial concentration of 100 mg/L at ambient temperature of 25°C and natural pH of solution (pH = 5.8 for NiO-Mt and pH = 6.3 for commercial bentonite). The adsorption kinetics and isotherms are well fitted by pseudo-second order and Langmuir models, respectively. The thermodynamic parameters such as the changes in Gibbs free energy, enthalpy, and entropy are determined. The MB adsorption is physical, spontaneous and exothermic for both adsorbents.

Keywords


Adsorption, Isotherms, Kinetics, Methylene Blue, NiO-Mt, Thermodynamics.

References