Open Access Open Access  Restricted Access Subscription Access

A Study on Entropy Generation of Hydromagnetic Oscillating Flow of a Diamond-Ethylene Glycol+Water Based Couple Stress Nanofluid in a Vertical Channel in the Presence of Joule Heating and Thermal Radiation


Affiliations
1 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
 

The current work communicates the entropy generation analysis of oscillating flow of magnetohydrodynamic couple stress nanofluid in a vertical channel. The main objective of present study is to examine the entropy analysis of a magnetohydrodynamic couple stress nanofluid. In this study, water and ethylene glycol (50:50) and diamond are used as the base fluid and nanoparticles, respectively. The effects of radiative heat, Ohmic, and viscous dissipation are all considered. By employing the perturbation process, the governing partial differential equations are transformed into the set of ordinary differential equations, which are then deciphered by implementing the Runge-Kutta fourth-order scheme with shooting technique. The obtained outcomes reveal that, amplifying viscous dissipation promising the temperature whereas the reverse is true for the influence of couple stress viscosity and Hartmann number. Heat transfer rate is decelerating with the boost up in Hartmann number at the walls while it is accelerating with the increment in viscous dissipation at the right wall. Entropy is escalating for intensifying viscous dissipation, and thermal radiation whereas the reverse is true for the impression of couple stress viscosity, and volume fraction of nanoparticles. Bejan number is falling for escalating volume fraction of nanoparticles, and viscous dissipation while it is enhancing with escalation in couple stress parameter.

Keywords

Bejan Number, Couple Stress Nanofluid, Entropy Generation, Joule Heating, Oscillating Flow, Thermal Radiation.
User
Notifications
Font Size

  • Choi S U S & Eastman J A, Am Soc Mech Eng Fluids Eng Div FED, 231 (1995) 99.
  • Hatami M, Hatami J & Ganji D D, Comput Methods Programs Biomed, 113 (2014) 632.
  • Hayat T, Shah F & Alsaedi A, Int Commun Heat Mass Transf, 111 (2020) 104454.
  • Mandal S & Shit G, Chinese J Phys, 74 (2021) 239.
  • Monaledi R L & Makinde O D, Defect Diffus Forum, 387 (2018) 273.
  • Okonkwo EC, Wole-Osho I, Almanassra I W, Abdullatif Y M & Al-Ansari T, J Therm Anal Calorim, 145 (2021) 2817.
  • Rikitu B H, Makinde O D & Enyadene L G, J Nanofluids, 10 (2021) 31.
  • Sheikholeslami M, Ganji D D, Li Z & Hosseinnejad R, Sci Iran, 26 (2019) 1405.
  • Rajamani S, Reddy A S, Srinivas S & Ramamohan T R, Indian J Pure Appl Phys, 60 (2022) 354.
  • Santosh Chaudhary, Indian J Chem Technol, 29 (2022) 311.
  • Azimi M, Ganji D D, Azimi A & Riazi R, Indian J Chem Technol, 25 (2018) 231.
  • Basha H T, Sivaraj R, Reddy A S & Chamkha A J, Eur Phys J Spec Top, 228 (2019) 2531.
  • Hosseinzadeh K, Asadi A, Mogharrebi A R, Azari M E & Ganji D D, J Therm Anal Calorim, 143 (2021) 1081.
  • Massoudi M D & Hamida M B B, Eur Phys J Plus, 135 (2020) 11.
  • Saleh B & Sundar L S, Powder Technol, 380 (2021) 430.
  • Muneeshwaran M, Srinivasan G, Muthukumar P & Wang C C, Int Commun Heat Mass Transf, 125 (2021) 105341.
  • Devakar M & Iyengar T K V, Nonlinear Anal Model Control, 15 (2010) 29.
  • Govindarajulu K & Reddy A S, Proc Inst Mech Eng Part E J Process Mech Eng, 236 (2022) 1544.
  • Hayat T, Muhammad T & Alsaedi A, Chinese J Phys, 55 (2017) 930.
  • Rajkumar D & Reddy A S, Phys Scr, 96 (2021) 125233.
  • Sithole H, Mondal H, Goqo S, Sibanda P & Motsa S, Appl Math Comput, 339 (2018) 820.
  • Stokes V K, Phys Fluids, 11 (1968) 1131.
  • Adesanya S O & Makinde O D, Comput Appl Math, 34 (2015) 293.
  • Ramesh K, Reddy M G & Souayeh B, Appl Math Mech (English Ed), 42 (2021) 593.
  • Dhlamini M, Mondal H, Sibanda P & Motsa S, Int J Appl Comput Math, 7 (2021) 2.
  • Umavathi J C & Bég O A, Microfluid Nanofluidics, 25 (2021) 1.
  • Usman M, Gul T, Khan A, Alsubie A & Ullah M Z, Int Commun Heat Mass Transf, 127 (2021) 105562.
  • Rajamani S & Reddy A S, Proc Inst Mech Eng Part E J Process Mech Eng, 235 (2021) 1895.
  • Jawad M, Khan A & Shah S, Brazilian J Phys, 51 (2021) 1096.
  • Datta N, Dalal D C & Mishra S K, Int J Heat Mass Transf, 36 (1993) 1783.
  • Esfe M H, Bahiraei M, Torabi A, & Valadkhani M, Int Commun Heat Mass Transf, 120 (2021) 104859.
  • Malathy T & Srinivas S, Int Commun Heat Mass Transf, 35 (2008) 681.
  • Radhakrishnamacharya G & Maiti M K, J Heat Mass Transf, 20 (1977) 171.
  • Wang C Y, J Appl Mech, Trans ASME, 38 (1971) 553.
  • Zamzari F, Mehrez Z, El Cafsi A, Belghith A & Le Quéré P, J Hydrodyn, 29 (2017) 632.
  • Srinivas S, Kumar C K & Reddy A S, Nonlinear Anal Model Control, 23 (2018) 213.
  • Shawky H M, Heat Mass Transf, 45 (2009) 1261.
  • Ahmed S & Xu H, Int. Commun. Heat Mass Transf, 120 (2021) 105042.
  • Ye Q, Zhang Y & Wei J, Appl Therm Eng, 196 (2021) 117275.
  • Venkatesan G & Reddy A S, Eur Phys J Spec Top, 230 (2021) 1475.
  • Bejan A, J Heat Transfer, 101 (1979) 718.
  • Dhahri H, Slimi K & Nasrallah S B, J Porous Media,11 (2008) 557.
  • Hosseinzadeh K, Mardani M R, Salehi S, Paikar M, Waqas M & Ganji D D, Pramana - J Phys, 95 (2021) 57.
  • Upadhya S M, Raju S V S R, Raju C S K, Shah N A & Jae D C, Chinese J Phys, 77 (2021) 1080.
  • Govindarajulu K & Reddy A S, Phys Fluids, 34 (2022) 013105.
  • Kumar M A, Reddy Y D, Rao V S & Goud B S, Case Stud Therm Eng, 24 (2021) 100826.
  • Kumar C K, Srinivas S & Reddy A S, J Mech, 36 (2020) 535.
  • Zhao T, Khan M R, Chu Y, Issakhov A, Ali R & Khan S, Appl Math Mech (English Ed), 42 (2021) 1205.
  • Loganathan K, Mohana K, Mohanraj M, Sakthivel P & Rajan S, J Therm Anal Calorim, 144 (2021) 1935.

Abstract Views: 37

PDF Views: 15




  • A Study on Entropy Generation of Hydromagnetic Oscillating Flow of a Diamond-Ethylene Glycol+Water Based Couple Stress Nanofluid in a Vertical Channel in the Presence of Joule Heating and Thermal Radiation

Abstract Views: 37  |  PDF Views: 15

Authors

A. Subramanyam Reddy
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
S. Rajamani
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India

Abstract


The current work communicates the entropy generation analysis of oscillating flow of magnetohydrodynamic couple stress nanofluid in a vertical channel. The main objective of present study is to examine the entropy analysis of a magnetohydrodynamic couple stress nanofluid. In this study, water and ethylene glycol (50:50) and diamond are used as the base fluid and nanoparticles, respectively. The effects of radiative heat, Ohmic, and viscous dissipation are all considered. By employing the perturbation process, the governing partial differential equations are transformed into the set of ordinary differential equations, which are then deciphered by implementing the Runge-Kutta fourth-order scheme with shooting technique. The obtained outcomes reveal that, amplifying viscous dissipation promising the temperature whereas the reverse is true for the influence of couple stress viscosity and Hartmann number. Heat transfer rate is decelerating with the boost up in Hartmann number at the walls while it is accelerating with the increment in viscous dissipation at the right wall. Entropy is escalating for intensifying viscous dissipation, and thermal radiation whereas the reverse is true for the impression of couple stress viscosity, and volume fraction of nanoparticles. Bejan number is falling for escalating volume fraction of nanoparticles, and viscous dissipation while it is enhancing with escalation in couple stress parameter.

Keywords


Bejan Number, Couple Stress Nanofluid, Entropy Generation, Joule Heating, Oscillating Flow, Thermal Radiation.

References