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For searching an item in unstructured databases, Grover's quantum search algorithm offers quadratic speedup over 
classical search algorithms. This paper reports 2 to 5 quantum-bit (Qubit) implementations of Grover's search algorithm 
using the phase-flip method for oracle function realization without any extra ancilla qubit. A comprehensive estimation and 
analysis of the theoretical and physical accuracies of the algorithm have been presented. The impact of increasing qubits on 
accuracy has been computed and analyzed. The metrics delineated for comparison are the number of qubits and gates, depth 
of the circuit, execution time, and theoretical/physical accuracy. The results revealed a greater disparity between theoretical 
and physical accuracy using a higher number of qubits perceived to be caused by noisy qubits utilized in computations. The 
novelty of the work is the investigation of variations caused by the noise in the accuracy and execution time of Grover's 
search algorithm. The results indicate that because of noise, the accuracy of 2- and 3- qubit implementations declined by 
14.49% and 33.86%, whereas the execution time increased by 50% and 80%; respectively. 
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1 Introduction 
Quantum computers promise significant 

improvement in terms of speedup for some specific set 
of hard computational problems intractable with 
classical counterparts1. Nowadays, data is growing 
bigger at a much faster rate which leads to the problem 
of handling and subsequently processing bigger 
datasets2. In order to search for a particular item in a 
big unstructured dataset, classical search algorithms 
face difficulties3 and get very intricate as the data is in 
the form of matrices and vectors. To overcome this 
problem, quantum search algorithms promise superior 
performance. In quantum computing, algorithms are 
based on linear algebra with data encoded in the form 
of matrices and vectors, so they can handle big datasets 
more efficiently, which leads to the improved speed of 
desired operation4-6. Quantum algorithms like HHL 
algorithm7 for matrix inversion, Shor's algorithm8 for 
factoring large numbers into primes providing 
exponential speedup, and Grover's algorithm9 for 
searching an item in an unstructured database promise 
quadratic speedup.  

Quantum computer operates by controlling the 
behaviour of sub-atomic particles based on principles 
of superposition and entanglement10-11. The basic unit 
of information in quantum computation is Quantum-

bit (Qubit) which is a unit vector in 2-dimensional 
vector space and represented by basis vectors |0⟩ or 
|1⟩. Basis vector |0⟩ corresponds to |↑⟩ polarization of 
a photon or an electron's spin-up position and |1⟩ 
corresponds to |↓⟩ polarization of a photon or 
electron's spin-down position10. Classical bits' 0' and 
'1' can be represented by basis vectors |0⟩ and |1⟩ in 
quantum computing10, 12. A single qubit stores '0' and 
'1' simultaneously, whereas a 2-qubit system can be in 
four states, i.e., '00', '01', '10', and '11' simultaneously. 
Quantum computers work like probabilistic as well as 
non-deterministic computers13.  

Although a qubit can be in an infinite number of 
super positions, it can only draw out information 
equivalent to a classical bit. It happens because of the 
measurement. When the measurement is applied to a 
qubit, it changes its state to any of the basis states. 
After measurement in {|0⟩, |1⟩} basis, quantum 
computers produce results in any of the two states 
when it is in an equal superposition of |0⟩ and |1⟩13-14. 
Quantum gates are the circuits that perform 
manipulations on qubits. The basic gates in quantum 
computing are Hadamard gate utilized to create 
superposition, Pauli gates (X, Y and Z) are single-
qubit used for representing rotation operation about x, 
y and z axes of the Bloch sphere by π radians, and 
Controlled NOT (CNOT/CX) gate to produce 
entanglement operation12-15. 

—————— 
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This paper reports a comparison of the theoretical 
accuracy of Grover's algorithm with the physical 
accuracy. The theoretical accuracy is computed using 
a simulator16, while physical accuracy is computed 
using a real-time quantum computer17. The 2-to-5 
qubit implementations of Grover's algorithm are 
considered for comparison3,18-21 for different number 
of iterations. The variations in the accuracy and 
execution time caused by noise present in real-time 
quantum computers is also investigated for 2-to-5 
qubit implementations of Grover's algorithm. 

The structure of this paper is as follows: Section 2 
introduces a brief introduction to quantum algorithms 
and describes Grover's algorithm in detail. Section 3 
enumerates the various implementations of Grover's 
algorithm. Section 4 presents the experimental 
evaluation and comparison of various 
implementations of Grover's algorithm. Section 5 
presents the noise analysis of Grover's algorithm up to 
5-qubit implementations. Section 6 outlines the 
conclusion of the paper. 
 

2 Quantum Algorithms 
There are numerous algorithms designed for 

specific problems in classical as well as quantum 
computing. Some quantum algorithms offer non-
exponential speedup than classical algorithms14 e.g. 
Grover's algorithm9exploited to search an 
unstructured database and provide a quadratic 
speedup (O√𝑁).Some quantum algorithms promise 
exponential speedup e.g.Simon's algorithm to find the 
periodicity of any function22and Shor's factoring 
algorithm for factoring integers8.  

 
2.1 Grover's Algorithm 

Grover's algorithm is developed by L.K. Grover in 
1996 for searching an item9 in an unstructured 
database of N items, as shown in Fig 1. Classical 
algorithms perform searching for a particular item in 
𝑂ሺ𝑁ሻ operations, whereas Grover's algorithm 
performs the same task in 𝑂൫√𝑁൯ operations23. 
Hence, this algorithm delivers quadratic speedup over 
classical counterparts. This unstructured database has 
2n states, i.e., N = 2n, where n is the number of qubits 
and N is the size of the database24-25. 

In order to find a particular item (say purple item) in 
the unstructured database of N items, this item is called 

winner and denoted by w. The purple item is referred to 
as marked item, whereas the rest of the items in the 
database are unmarked items. There are four stages of 
applying Grover's algorithm- initialization, oracle 
formation, amplitude amplification, and measurement. 
An equal superposition of all states is generated in the 
initialization step. The oracle formation and amplitude 
amplification are major steps in this algorithm. The 
output is measured in the final step.  

Oracle is just like a black box that has theability to 
recognize the solutions to a search problem26. Oracle 
is applied as described in (1) as 
 

𝑓ሺ𝑥ሻ ൌ ൝
0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑢𝑛𝑚𝑎𝑟𝑘𝑒𝑑 𝑖𝑡𝑒𝑚𝑠
1, 𝑓𝑜𝑟 𝑚𝑎𝑟𝑘𝑒𝑑 𝑖𝑡𝑒𝑚 ሺ𝑤𝑖𝑛𝑛𝑒𝑟ሻ 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 ൌ 𝑤
 ...(1) 

 

This function f(x) is encoded into a unitary matrix 
such that x, w ϵ {0, 1}n and oracle matrix4 acting on 
the standard basis states |𝑥⟩is given by (2) as 
 

𝑈௪|𝑥⟩ ൌ  ሺെ1ሻሺ௫ሻ|𝑥⟩ ...(2) 
 

The oracle transformation matrix 𝑈௪ is represented 
as (3) 

 

𝑈௪ ൌ 𝐼 െ 2|𝑤⟩⟨𝑤|  ...(3) 
 

where I is the identity matrix,|𝑤⟩ is the solution for 
the given search problem and |𝑤⟩⟨𝑤| is the outer 
product of |𝑤⟩with itself. 
 

If |𝑥⟩ ൌ |𝑤⟩ then 
 

𝑈௪|𝑤⟩ ൌ 𝐼|𝑤⟩ െ 2|𝑤⟩⟨𝑤|𝑤⟩ ൌ 𝐼|𝑤⟩ െ 2|𝑤⟩ ൌ െ|𝑤⟩ …(4) 
 

If |𝑥⟩ ് |𝑤⟩ then 
 

𝑈௪|𝑥⟩ ൌ 𝐼|𝑥⟩ െ 2|𝑤⟩⟨𝑤|𝑥⟩ ൌ 𝐼|𝑥⟩ ൌ |𝑥⟩ ...(5) 
 

Oracle inverts the marked item, whereas it keeps 
the unmarked items unchanged. This oracle is a 
diagonal matrix where the marked item will have a 
negative phase. The matrix is given by (6) as 

 

𝑈௪ ൌ  

⎣
⎢
⎢
⎡ሺെ1ሻሺሻ 0 … 0

0 ሺെ1ሻሺଵሻ … 0
: :∶ :
0 0 … ሺെ1ሻሺଶ

ሻ⎦
⎥
⎥
⎤
 ...(6) 

The amplitude of the marked item is stretched out, 
whereas the amplitude of unmarked items is lowered 
when Grover's diffusion operator is applied27. 
Measuring the final state yields the marked item with 
high certainty. Grover's diffusion operator3 for the 
amplitude amplification or inversion about the mean 
of the target item is given by (7) as 

 
 

𝑈௦ ൌ 2|𝑠⟩⟨𝑠| െ 𝐼 ...(7) Fig. 1 — Querying an item in an unstructured database. 
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where|𝑠⟩ is the superposition of the states, and I is the 
Identity matrix. The diffusion matrix (𝑈ௌሻis 
 

⎣
⎢
⎢
⎢
⎢
⎢
⎡

2
𝑁
െ 1

2
𝑁

…
2
𝑁

2
𝑁

2
𝑁
െ 1 …

2
𝑁

⋮ ⋮ ⋮ ⋮
2
𝑁

2
𝑁

…
2
𝑁
െ 1⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

The implementation steps for Grover's algorithm 
are illustrated below: 
(i) Prepare |0⟩ where |0⟩ means 

|0⟩|0⟩… … … .|0⟩ for n times and  means 
tensor product3. Then, create the superposition of 
2n states. The superposition is created by applying 
the Hadamard gate on |0⟩i.e.𝐻|0⟩ as 
described by (8) 

 

|𝑠⟩ ൌ ሺ𝐻|0⟩ሻ୬ ൌ
ଵ

√ே
∑ |𝑥⟩ேିଵ
௫ୀ  ...(8) 

 

where, |𝑠⟩ is the superposition of all the states and 
ଵ

√ே
is the amplitude10. 

Fig. 2(a) illustrates the initial state as a geometric 
representation of two perpendicular vectors in two-
dimensional space, whereas Fig. 2 (b) represents the 
amplitude of the |s⟩ state for N items in the form of bar 
graph. 
(ii) Apply oracle on 𝐻|0⟩ to reflect the target 

item12. Define a function 𝑓: ሼ0, … . . ,𝑁 െ 1ሽ →
ሼ0,1ሽis defined as (9)  

 

𝑓ሺ𝑥ሻ ൌ ൜
1, 𝑖𝑓 𝑥 𝑖𝑠 𝑠𝑒𝑎𝑟𝑐ℎ𝑒𝑑
0,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ...(9) 
 

where 𝑥 is the target item. Oracle is applied such 
that18, 13 

 

𝑈௪|𝑥⟩ ൌ ሺെ1ሻሺ௫ሻ|𝑥⟩ ...(10) 

Figure 3(a) geometrically represents the reflection 
of superposition state |s⟩ to 𝑈௪|s⟩ when oracle is 
applied. Fig. 3(b) represents the amplitude negation of 
the marked state |w⟩ while keeping the unmarked 
states unaffected, as described by equations  
(4) and (5).  
(iii) Now apply Grover's diffusion operator (𝑈௦) for 

the amplitude amplification or inversion about the 
mean of the target item26. This operator can be 
applied by using phase shift gate21. This 
transformation maps the state to 𝑈௦𝑈௪|𝑠⟩ and 
completes the transformation4. 

The diffusion operator applied to the state 𝑈௪ |s⟩ 
results in additional reflection and maps 𝑈௪ |s⟩ to 
𝑈௦𝑈௪ |s⟩ geometrically. The reflection of the state 
𝑈௪ |s⟩ occurs about the state |s′⟩ as shown in Fig. 4(a). 
Fig. 4 (b) reveals that the amplitude of the marked 
state |w⟩ is inverted and amplified when the diffusion 
operator is applied, whereas the amplitude of the 
unmarked states is lowered. 

 
 

Fig. 2 — (a) is the geometric representation of two perpendicular
vectors |s′⟩ and |w⟩ in two-dimensional space which expresses the
initial state as |s⟩ = sinθ|w⟩+cosθ|s′⟩, where, θ= arcsine (1/√N), and
(b)Amplitude of the |s⟩ state for N items in the form of bar graph28. 

 
 

Fig. 3 — (a) Corresponds to a reflection of the state |s⟩ to 𝑈௪|s⟩
about |s′⟩ geometrically, and (b) shows that the amplitude of
marked state |w⟩ becomes negative and the average amplitude is
lowered28. 



INDIAN J PURE APPL PHYS, VOL. 61, MAY 2023 

 
 

358

(iv) Repeat steps (ii) and (iii) O൫√𝑁൯ times, i.e., 

𝑘 ൌ 𝑟𝑜𝑢𝑛𝑑 ቀ
గ

ସ
√𝑁ቁ.  

(v) Measure the output10, 18. 
Figure 5 reveals the schematic circuit of Grover's 

search algorithm for a database of size N. The size of 
the database is equal to the number of states, i.e., 𝑁 ൌ
2. Qubits are initialized and put into superposition 
by using the Hadamard gate. Oracle ሺ𝑈௪ሻ followed by 
the Grover diffusion operator is used to search the 
correct marked state and repeated 𝑂൫√𝑁൯ times. 
Measurement is taken in the end to detect the correct 
marked state. 
 

3 Implementation of Grover's Algorithm 
The encoding methods which can be used for state 

marking in the oracle are boolean and phase flip 
methods. The Boolean method uses the 𝑁𝑂𝑇 and 
𝐶ሺ𝑁𝑂𝑇ሻሺ𝑘  𝑛ሻgates to construct oracles where 
𝐶ሺ𝑁𝑂𝑇ሻ is targeted on the ancilla qubit (initialized 
to |1⟩), which flips the phase of the marked state.  

The phase flip method uses Z and 𝐶ሺ𝑍ሻ gates to 
build oracles and flips the phase of the marked state 
directly. The phase flip method is used for the 
construction of oracle in all implementations reported 
in this paper instead of the boolean method, as the 
latter requires ancilla qubits and other resources. The 
algorithm executes states |11⟩, |111⟩, |1111⟩, and 
|11111⟩. Quantum gates such as Hadamard, Pauli- 
(X, Z), controlled-Z, multi-controlled Z, C-NOT, 
Toffoli gate (CCX), and multi-controlled-NOT gates 
are used for the different implementations of Grover's 
algorithm. The circuit diagrams with a brief 
description of Grover's algorithm for 2-, 3-, 4-, and 5-
qubit are provided. All the implementations are done 
using a different number of iterations. Grover's 
algorithm with 2-qubit, 3-qubit, and 4-qubit is 
implemented with single, up to two, and up to three 
iterations, respectively. This paper includes the 
implementation of Grover's algorithm for 5-qubit with 
up to four iterations, which is not demonstrated 
earlier. The circuit diagrams in Figs. 6 - 9 are divided 
into four parts which include (a) initialization,  
(b) oracle formation, (c) diffusion operator or 
amplitude amplification, and (d) measurement.  
 
3.1 Five Qubit Implementation 

The 5-qubit implementation of Grover's algorithm 
for a single iteration divided into four steps is briefly 
illustrated. Phase flip technique for the construction of 
oracle and diffusion operator is used. In the 5-qubit 
implementation, the initialization step puts qubit |𝑞⟩ 
to |𝑞ସ⟩ in the superposition. The superposition of 
qubits is achieved by using the Hadamard gate on all 
the qubits, as shown in Fig. 9(a). The amplitude of 

each state is 
ଵ

√ଷଶ
ൎ 0.18 after this step. Oracle 

function only inverts the marked state |w⟩ ൌ |11111⟩ 
and keeps the other states unchanged. The phase flip 
method is used to invert the marked state. The 
amplitude of marked state |w⟩ ൌ |11111⟩ is inverted 

to െ
ଵ

√ଷଶ
ൎ െ0.18. The combination of the Hadamard 

gate and CCCCZ gate is deployed to construct the 

 

Fig. 4 — (a) Corresponds to a reflection of the state 𝑈௪ |s⟩ to
𝑈௦𝑈௪ |s⟩ about |s′⟩ geometrically, and (b) shows the increased
amplitude of state |w⟩28. 

 
 

Fig. 5 — Schematic circuit for Grover's search algorithm for states 𝑁 ൌ 2 . Oracle ሺ𝑈௪ሻand Grover diffusion operator is used with
𝑂൫√𝑁൯ iterations. 
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oracle as shown in Fig. 9(b). The amplification step 
inverts the amplitude of the marked state |w⟩ ൌ
|11111⟩ about the average of the amplitudes by 
applying Grover's diffusion operator. The amplitude 
of the marked state is increased, whereas the 
amplitude of the unmarked states is decreased. 

Grover's diffusion operator is constructed using a 
combination of Hadamard, Pauli-X (NOT),and 
CCCCZ gates, as shown in Fig. 9(c). 

The average amplitude is given by (11) as 
 

𝛼௩ ൌ
ଷଵ∗.ଵ଼ାሺି.ଵ଼ሻ

ଷଶ
ൎ 0.17 …(11) 

 
Fig. 6 — Quantum realization of 2-qubit Grover'salgorithm for finding |w⟩ ൌ |11⟩, (a) Initialization using Hadamard gate to put the
qubits in superposition, (b) Controlled-Z (CZ) gate symbolizing an oracle to reflect the marked state |11⟩, (c) Diffusion operator reflects 
the marked state again and amplifies it, (d) Measurement to detect the marked state |11⟩. 
 

 
 

Fig. 7 — Quantum realization of 3-qubit Grover's algorithm for finding |w⟩ ൌ |111⟩, (a) Initialization using Hadamard gate to put the
qubits in superposition, (b) Double controlled-Z (CCZ) gate symbolizing an oracle to reflect the marked state |111⟩ where 𝑍 ൌ 𝐻𝑋𝐻, (c) 
Diffusion operator reflects the marked state again and amplifies it, (d) Measurement to detect the marked state |111⟩ in 2 iterations. 
 

 
 

Fig. 8 — Quantum realization of 4-qubit Grover's algorithm for finding |w⟩ ൌ |1111⟩, (a) Initialization using Hadamard gate to put the
qubits in superposition, (b) Triple controlled-Z (CCCZ) gate symbolizing an oracle to reflect the marked state |1111⟩ where 𝑍 ൌ 𝐻𝑋𝐻, 
(c) Diffusion operator reflects the marked sate |1111⟩ and amplifies it. (d) Measurement to detect the marked state |1111⟩ in 3 iterations. 
 

 
 

Fig. 9 — Quantum realization of 5-qubit Grover's algorithm for finding |w⟩ ൌ |11111⟩,(a)Initialization using Hadamard gate to put the
qubits in superposition, (b) CCCCZ gate symbolizing an oracle to reflect the marked state |11111⟩, where 𝑍 ൌ 𝐻𝑋𝐻, (c) Diffusion 
operator reflects the marked sate |11111⟩ and amplify it. (d) Measurement to detect the marked state |11111⟩ in 4 iterations. 
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The difference between the average amplitude 
(𝛼௩ሻ and amplitude of the marked state |w⟩ ൌ
|11111⟩, 𝛼|ଵଵଵଵଵ⟩ is given by (12) as 

 

𝑑|ଵଵଵଵଵ⟩ ൌ  𝛼௩ െ ሺെ0.18ሻ ൌ 0.35 …(12) 
 

The inversion about the average amplitude results 
in increased amplitude of the marked state |w⟩ ൌ
|11111⟩ given by (13) as 

 

𝛼|ଵଵଵଵଵ⟩ ൌ 𝛼௩  𝑑|ଵଵଵଵଵ⟩ ൌ 0.52 …(13) 
 

The amplitude of each unmarked state is decreased 
and calculated as 0.16 using the same method. 
Finally, measurement gates shown in Fig. 9(d) are 
applied at the end of the quantum circuit to detect the 
marked state |w⟩ ൌ |11111⟩. The marked state 
|w⟩ ൌ |11111⟩ with better accuracy is obtained only 
with four iterations. 

3.2 Quantum Gates Used in Oracle Formation 
The controlled Z ሺ𝐶𝑍ሻ and multi-controlled Z 

ሺ𝐶𝐶𝑍,𝐶𝐶𝐶𝑍,𝐶𝐶𝐶𝐶𝑍ሻ are major gates involved in the 
construction of oracles, as shown in Tables 1-4. Pauli-
Z gate is equivalent to the combination of Hadamard 
and Pauli-X gate given by (14) as 

 

𝑍 ൌ 𝐻𝑋𝐻  ...(14) 
 

𝐶𝑍 gate used in the construction of oracle and 
diffusion operator in 2-qubit implementation is 

Table 2 — Experimental results of Grover's algorithm implementations from 2 to 5 qubits 

Grover's 
Algorithm 

No of gates Depth of 
circuit 

Number of 
Iterations 

Simulator Physical device(5-qubit) 

Accuracy (%) Execution Time (s) Accuracy (%) Execution Time (s) 

2-qubit 14 8 1 100 0.51 88.965 12.9 
3-qubit 24 12 1 77.40 0.78 28.906 13.1 

42 22 2 94.60 0.91 30.505 13.2 
 

4-qubit 
30 12 1 47.80 1.07 5.737 13.4 
52 22 2 91.10 1.25 6.099 14.2 
74 32 3 96.20 1.60 6.251 14.2 

 
5-qubit 

36 12 1 26 1.18 3.149 14.6 
62 22 2 59.90 1.45 3.191  14.7 
88 32 3 89.80 1.84 3.198 15.9 

114 42 4 99.99 2.03 3.357 17.2 
 

Table 3 — Noise parameters with their description33 

Noise parameters Description 

Rotation error (r) Rotation error arises either due to bit flip or phase flip, and both the operations with probability α.
Kraus operators for bit flip, phase flip, and both are ൛√1 െ 𝛼𝐼,√𝛼𝜎௫ൟ,൛√1 െ 𝛼𝐼,√𝛼𝜎௬ൟ
and൛√1 െ 𝛼𝐼,√𝛼𝜎௭ൟrespectively34. 

Decay (g) The decay of a quantum system damages the quantum signal because of its impact on every qubit.
The Kraus operators for decaying of quantum state with respect to the thermal state are

⎩
⎨

⎧ ඥ𝑝 ൬
1 0
0 ඥ𝑔

൰ ,ඥ𝑝 ൬0 ඥ1 െ 𝑔
0 0

൰ ,

ඥ1 െ 𝑝 ൬ඥ𝑔 0
0 1

൰ ,ඥ1 െ 𝑝 ൬
0 0

ඥ1 െ 𝑔 0൰⎭
⎬

⎫
, where p is the thermal factor, and g is the decay 

factor33. 
Decoherence (f) Decoherence error arises due to the deterioration of quantum information present inside a quantum

system when coupled with the environment. The Kraus operators for decoherence is

ቊට
ଵା

ଶ
𝐼,ට

ଵା

ଶ
𝜎௭ቋ, where f is the decoherence factor33. 

Depolarization (d) Depolarization introduces errors generated by the quantum channel in a quantum communication

link. Kraus operators for the depolarization channel is  ൜√1 െ 𝛼𝐼,ට
ఈ

ଷ
𝜎௫ ,ට

ఈ

ଷ
𝜎௬,ට

ఈ

ଷ
𝜎௭ൠ where 

𝜎௫ ,𝜎௬,𝜎௭ are the computational basis, and I is the identity matrix35. 

Thermal (p) The quantum information inside a quantum system degrades because of the thermal variations in an
open quantum system. 

Table 1 — Accuracy results for Grover's algorithm 
implementations3 

Implementation level  Accuracy 
2-qubit 74.05% 
3-qubit 59.69% 
4-qubit 6.62% 
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realized by using Hadamard and C-NOT gate together 
using (15) as 
 

𝐶𝑍 ൌ 𝐻𝐶𝑋𝐻 ...(15) 
 

3-, 4-, and 5-qubit implementations require 
𝐶𝐶𝑍,𝐶𝐶𝐶𝑍,𝐶𝐶𝐶𝐶𝑍 gates, respectively, for oracle 
construction and diffusion operator formation. These 
gates are developed by using the combination of 
Hadamard and multi-controlled NOT gates given by 
(16)-(18) as  

 

𝐶𝐶𝑍 ൌ  𝐻𝐶𝐶𝑋𝐻 ...(16) 
 

𝐶𝐶𝐶𝑍 ൌ  𝐻𝐶𝐶𝐶𝑋𝐻 ...(17) 
 

𝐶𝐶𝐶𝐶𝑍 ൌ  𝐻𝐶𝐶𝐶𝐶𝑋𝐻 ...(18) 
 

The action of these multi-controlled Z gates is such 
that when all the controls are |1⟩, target flips. 
 
4 Experimental Evaluation 

The experiments are performed on the quantum 
computer based on superconducting qubits 
technology. Various quantum computers and quantum 
simulators are publicly available on the cloud29. 
Grover's algorithm for 2-, 3-, 4-, and 5-qubit is 
implemented on the 32-qubit simulator back-end16 

using Qiskit31 to compute the theoretical accuracy. 
Qiskit31 software development kit contains quantum 
circuit simulators and real-time quantum processor 
back-ends for processing information encoded in 
qubits. All implementations of Grover's algorithm are 
realized on real-time quantum processor backend17, 
which can be used for up to 16 qubits to check the 
physical accuracy of the algorithm. There is a 
maximum of 8192 shots available to execute a circuit. 
Therefore, the same number of shots were utilized  
for searching every state. In addition to the 
implementation of Grover's algorithm up to 5-qubit, 
the variations in the accuracy and execution time 
caused by noise present in noisy intermediate-scale 
quantum computers (NISQ) have been investigated. 
Various noise parameters are taken into consideration 
for the evaluation. 

4.1 Number of Qubits, Gates, and Iterations 
It is observed that by increasing the number of 

qubits from 2 to 5-qubit, the gate count increases. The 
number of gates increased from 14 to 114 for 2 to 5-
qubit implementations, as shown in Table 2. The 
correct marked state with better accuracy will be 
detected when the oracle and diffusion operator is 
repeated several times. This repetition of the oracle 
and diffusion operator together is called iteration12. 
All the possible iterations are taken up to 

𝑟𝑜𝑢𝑛𝑑 ቀ
గ

ସ
√𝑁ቁ,which means one iteration for 2-qubit, 

up to 2 iterations for 3-qubit, up to 3 iterations for 4-
qubit, and up to 4 iterations for 5-qubit 
implementations. It is observed that in order to obtain 
the correct marked state with better accuracy 

𝑟𝑜𝑢𝑛𝑑 ቀ
గ

ସ
√𝑁ቁ number of iterations are required, 

which means four iterations are required for 5-qubit 
implementations of Grover's algorithm. 

 
4.2 Depth of the Circuit 

The depth of the circuit is the extensive route 
starting from the input (initialization) and ending at 
the output (measurement)30. With increasing the 
number of qubits, the depth of the circuit is also 
increased. As the number of qubits are increased from 
2-to 5-qubit, the depth of the circuit increases from to 
8 to 42. The depth of circuits computed for all the 
possible iterations is listed in Table 2.  

 
4.3 Theoretical accuracy 

The accuracy or algorithm success probability 
(ASP) of Grover's algorithm is the probability of 
detecting the correct marked state. The ASP after the 
single iteration of Grover's algorithm can be 

calculated by 𝑡. ቂቀ
ேିଶ௧

ே


ଶሺேି௧ሻ

ே
ቁ ଵ

√ே
ቃ
ଶ
for single 

marked solution (t=1) [30]. Theoretically, the 
accuracy of Grover's algorithm for 2-qubit is 100 % 
with one iteration; for 3-qubit, the accuracy is 94.60 
% with two iterations; for 4-qubit, accuracy is 96.20 
% with three iterations, and for 5-qubit accuracy is 
99.99 % with four iterations as shown inTable 2.  
As the number of iterations for each qubit 

implementation increases up to 𝑟𝑜𝑢𝑛𝑑 ቀ
గ

ସ
√𝑁ቁas 

listed in Table 2, the theoretical accuracy  
of the algorithm gets better. It can be observed  
from Table 2 that the theoretical accuracy is above 
94% for all these implementations of Grover's 
algorithm. 

Table 4 — Study of noise impact on accuracy and execution 
speed using QSIM 

Grover's 
Algorithm 

(No of qubits) 

Marked 
states 

Accuracy (%) Execution Time (s) 
Without 

noise 
With 
noise 

Without 
noise 

With 
noise 

2 |11⟩ 100 40 8 12 

3 |111⟩ 94.5 11 10 18 

4 |1111⟩ 96.13 6.5 13 24 

5 |11111⟩ 99 3.5 23 43 
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5 Physical Accuracy and Execution Time 
The comparison between the physical accuracy of 

the earlier Grover's algorithm implementations for 2-, 
3-, and 4-qubit are illustrated in Table 13. This 
experiment was conducted with 8192 shots. It is seen 
that the accuracy of Grover's algorithm decreases as 
the number of qubits is increased. The accuracy of 
Grover's algorithm for 3- and 4-qubit implementations 
is decreased by 19.39 % and 91.06% compared to the 
accuracy of 2-qubit implementation3. 

In this study, all the implementations up to 5-qubit 
are performed on the physical device back-ends also. 
It could be observed from the results shown in Table 
2 that the physical accuracy of the algorithm 
decreases as the number of qubits increases from 2 to 
5 by 96.22 %, and the execution time increases by 
33.33 % for physical device. Table 2 also depicts a 
huge difference between the theoretical and physical 
accuracy of the algorithm implementations. In the 
case of 5-qubit implementation with four iterations, 
the physical accuracy of the algorithm decreases by 
96.64 % compared to theoretical accuracy. 

From Table 2, it can be observed that for 2-qubit 
implementation, the physical accuracy of the 
algorithm decreases by 11.04 % compared to 
theoretical accuracy. For 3-qubit implementation, the 
physical accuracy of the algorithm decreases by 62.66 
% with a single iteration and 67.75 % with two 
iterations compared to the theoretical accuracy of the 
algorithm. In the case of 4-qubit implementation, the 
degradations of physical accuracy by 88.01 % for one 
iteration, 93.30 % for two iterations, and 93.50 % for 
three iterations have been observed. 

Similarly, the degradation of 87.88% for one 
iteration, 94.67% for two iterations, 96.43% for three 
iterations, and 96.64% for four iterations have been 
observed in the physical accuracy for 5-qubit 
implementation. The degradation in the theoretical 
accuracy from 2 to 3 qubits is 22.6 %, from 3 to 4 
qubits is 38.24 %, and from 4 to 5 qubits is 45.60 %. 
In contrast, the physical accuracy degradation from 2 
to 3 qubits is 67.51%, from 3 to 4 qubits is 78.89 %, 
and from 4 to 5 qubits is 45.04 % for a single 
iteration. For two iterations, theoretical accuracy 
degradation from 3 to 4 qubits is 3.70 % and from 4 to 
5 qubits is 34.25%, whereas physical accuracy 
degradation from 3 to 4 qubits is 80 % and from 4 to 5 
qubits is 47.68 %. Similarly, for three iterations, the 
degradation in theoretical and physical accuracy from 
4 to 5 qubits is 6.65 % and 48.83 %, respectively. 

6 Noise Analysis  
Noise is significantly affecting the accuracy and 

speed of existing quantum bits. The major difference 
between theoretical and physical accuracies of 
quantum devices is due to noise only. Noisy 
interactions between entangled qubits and material 
impurities may cause internal noise in quantum 
circuits/systems, whereas stray fields and control 
electronics result in external noise. The ability to 
reduce noise is a major focus in developing quantum 
computers. The investigation of noise impact in the 
implementation of quantum circuits and systems is 
becoming of at most importance. In conventional 
quantum computing, the quantum states are expressed 
in terms of basis states, generally as linear 
combinations. However, there are use cases where it is 
impossible to represent quantum states as linear 
combinations of basis states. In these cases, the density 
matrix representation of quantum states becomes very 
useful. Simply put, the density matrix is an alternative 
way of expressing quantum states. In this paper, the 
QSIM33 simulator has been utilized to compute the 
noise performance of Grover's algorithm. QSIM 
simulator utilizes the density matrix formalism to 
compute changes in the state of a qubit when gates are 
applied to it. The density matrix formalism permits the 
incorporation of environmental noises according to 
convenience. The designed circuits in this simulator 
can be implemented with or without noise. The 
accuracy and execution time for both with and without 
noise cases is experimentally evaluated. The number of 

iterations used in the experiment is𝑟𝑜𝑢𝑛𝑑 ቀగ
ସ
√𝑁ቁ. 

When the number of qubits in Grover's algorithm 
increases, the iterations also increase. The increase in 
iterations results in the increased depth of the circuit. 
This implies an increase in the number of gates in the 
circuit. The increased number of gates is one of the 
factors which increases the noise in the circuit. Table 3 
depicts various noise parameters taken in this 
experiment, and Table 4 reveals the accuracy 
evaluation of Grover's algorithm up to 5-qubit on the 
QSIM simulator. The accuracy for 2-qubit 
implementation without noise when searching for 
marked state |11⟩is decreased by60% compared to the 
same implementation with noise, as revealed in Fig. 10 
(a). Also, for 3-qubit implementation without noise for 
marked state|111⟩, the accuracy of Grover's algorithm 
is reduced by 88.35% compared to the same 
implementation with noise, as revealed in Fig. 10(b). In 
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the case of 4-qubit implementation of searching a 
marked state |1111⟩ without noise, the accuracy of 
Grover's algorithm decreased by 93.23% compared to 
the same implementation with noise. Similarly, the 
accuracy for 5-qubit implementation for searching 
marked state |11111⟩ without noise is reduced by 
96.46% as compared to the same implementation with 
noise parameters. Grover's algorithm implementations 
take less time when no noise is considered, and the 
execution time increases when the noise is considered. 

The execution time of a 2-qubit implementation 
without noise parameters is 50% higher compared to 

the same implementation with noise parameters. For a 
3-qubit implementation without noise, the execution 
time is increased by 80% compared to the same 
implementation with noise parameters. Without 
considering the noise parameters for 4-qubit 
implementation, the execution time is increased by 
84.6% compared to the same implementation with 
noise parameters. Similarly, 5-qubit implementation 
without noise, an increment of 86.95% is observed 
when compared to the same implementation after 
considering the noise parameters. 

Table 5 depicts the decrease in the accuracy  
of Grover's algorithm for 2- and 3-qubit when  
noise is introduced in the system. The noise study 
reveals that thermal and depolarization errors are the 
smallest errors, rotation errors are the moderate errors, 
and decoherence and decay are the prominent errors. 
The accuracy of Grover's algorithm for 2-qubit and  
3-qubit is decreased by 14.49% and 33.86%, 
respectively, as noise parameter values vary from  
the ideal value. Similarly, the decrease in the accuracy 
of Grover's algorithm for 4- and 5-qubit is also 
observed.  
 

 
 

Fig. 10 — (a): Variation in the accuracy of 2- qubit
implementation for searching |11⟩ with and without noise,
(b) Variation in the accuracy of 3- qubit implementation for
searching |111⟩ with and without noise. 
 

Table 5 — Effect of various noises parameters on the accuracy of Grover's algorithm 

Grover's 
Algorithm 

Marked states Noise Parameters Accuracy (%) 
Rotation (r)  Decay (g) Decoherence (f) Depolarization (d) Thermal (p) 

2-qubit |11⟩ 1 1 1 1 1 100 
0.998 0.99998 0.9998 0.98 0.98 95.98 
0.996 0.99996 0.9996 0.96 0.96 92.15 
0.994 0.99994 0.9994 0.94 0.94 85.51 

3-qubit |111⟩ 1 1 1 1 1 94.50 
0.998 0.99998 0.9998 0.98 0.98 82.09 
0.996 0.99996 0.9996 0.96 0.96 71.56 
0.994 0.99994 0.9994 0.94 0.94 62.64 

 
 

Fig. 11 — Decomposition of CZ gate. Uଶሺ0,𝜋ሻ is equivalent to 
the Hadamard gate. 
 

 
Fig. 12 — Decomposition of CCZ gate. CX, Uଵ, Uଶ gates are used 

multiple times. Also, Uଵ ቀ
గ

ସ
ቁ ൌ  𝑇 , Uଵ ቀെ

గ

ସ
ቁ ൌ  𝑇ற and 

Uଶሺ0,𝜋ሻ ൌ 𝐻. 
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7 Conclusions 
The accuracy and execution time assessment of 

Grover's algorithm up to 5-qubit is carried out. The 
experimental results explicitly prove that as the 
number of qubits increases, the physical accuracy of 
the algorithm decreases, and the execution time 
increases when a real-time quantum computer is used. 
There is a huge difference between the theoretical 
accuracy and the physical accuracy of Grover's 
algorithm with 𝑟𝑜𝑢𝑛𝑑 ቀ

గ

ସ
√𝑁ቁ iterations. The 

variation in the accuracy and execution time is 
because of noisy quantum systems. The experimental 
results also show a decline in the accuracy and a rise 

in the execution time when environmental noise is 
introduced. Different kinds of noises have a  
different impact on the accuracy of Grover's search 
algorithm. Thermal and depolarization errors are 
small, rotation errors are moderate while decay and 
decoherence errors are large. So, it could be 
concluded that Grover's quantum search algorithm  
is good only for searching in small databases,  
whereas its accuracy degrades significantly because 
of the noise when the number of qubits increases. 
Thus, optimization of Grover's algorithm is required 
in order to improve the accuracy for higher counts of 
qubits. 

 
 

Fig. 13 — Decomposition of CCCZ gate. Like CCZ decomposition, CX, Uଵ, Uଶ gates are used multiple times, but the rotation of Uଵis 

different, i.e., 
గ

଼
. Here,Uଵ ቀ

గ

଼
ቁ ൌ  𝑧

భ
ఴ , Uଵ ቀെ

గ

଼
ቁ ൌ  𝑧ି

భ
ఴ and Uଶሺ0,𝜋ሻ ൌ 𝐻. 

 

 
 

Fig. 14 — Decomposition of CCCCZ gate. CCCCZ decomposition also includes CX, Uଵ, Uଶ gates where the rotation of Uଵ= 
గ

ଵ
. 

Here,Uଵ ቀ
గ

ଵ
ቁ ൌ  𝑧

భ
భల , Uଵ ቀെ

గ

ଵ
ቁ ൌ  𝑧ି

భ
భల and Uଶሺ0,𝜋ሻ ൌ 𝐻. 
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Appendix 

The multi-controlled-Z gates (CCZ, CCCZ, and 
CCCCZ) are not present in the QISKIT. So, these 
gates have been realized using CX and Unitary gates 
(Uଵ, Uଶ) with their different rotations. In this section, 
the decomposition of the CZ and other multi-
controlled-Z gates used in the implementation of 
Grover's algorithm has been described. In this 
experiment, CZ, CCZ, CCCZ, and CCCCZ have been 
considered as a single gate. The decompositions in 
Figs. 11-14 have been provided to give the idea about 
implementations of CZ and multi-controlled-Z gates. 
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