Open Access Open Access  Restricted Access Subscription Access

Efficient Electrode Material based on Carbon Cloth Supported Polyaniline/Reduced Graphene Oxide Composites for Supercapacitor Application


Affiliations
1 Department of Physics, Maharshi Dayanand University Rohtak, India
2 CSIR-Central Electrochemical Research Institute (CECRI) Chennai Unit, CSIR Madras Complex, Taramani, Chennai –600113, India

Nowadays, world energy infrastructure is being stretched due to imbalance between energy production and energy consumption; renewable & sustainable energy storage and conversion techniques could resolve this issue. Thus global energy requirements, limited availability of fossil fuels and environmental crisis drive the expansion of alternative or non- conventional energy sources with high energy and power densities. Electrochemical capacitors or supercapacitors, with a combined form of high power density and energy density, have acquired a stunning acceptance towards the field of electrochemical energy storage. Supercapacitors are used in electric vehicles, mobile phones, digital cameras, wearable devices, portable devices and uninterruptible power supplies (UPS) etc. Here, we have reported the binder free carbon cloth supported polyaniline/reduced graphene oxide (PRGO) composite hydrogel as a high performance supercapacitor electrode synthesized by a facile chemical polymerization method using phytic acid (PA). The electrochemical performance of binder free carbon cloth based PRGO composite hydrogel electrode has been analysed using cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) techniques. The high specific capacitance (CS) ~ 235.32 F g-1 has been obtained for the PRGO composite hydrogel @cc in 1 M H2SO4. The electrochemical results show that the binder free carbon cloth based PRGO composite hydrogel electrode is a promising candidate for supercapacitors.
User
Notifications
Font Size

Abstract Views: 156




  • Efficient Electrode Material based on Carbon Cloth Supported Polyaniline/Reduced Graphene Oxide Composites for Supercapacitor Application

Abstract Views: 156  | 

Authors

Anjli Gupta
Department of Physics, Maharshi Dayanand University Rohtak, India
Anil Ohlan
Department of Physics, Maharshi Dayanand University Rohtak, India
Kuldeep Singh
CSIR-Central Electrochemical Research Institute (CECRI) Chennai Unit, CSIR Madras Complex, Taramani, Chennai –600113, India

Abstract


Nowadays, world energy infrastructure is being stretched due to imbalance between energy production and energy consumption; renewable & sustainable energy storage and conversion techniques could resolve this issue. Thus global energy requirements, limited availability of fossil fuels and environmental crisis drive the expansion of alternative or non- conventional energy sources with high energy and power densities. Electrochemical capacitors or supercapacitors, with a combined form of high power density and energy density, have acquired a stunning acceptance towards the field of electrochemical energy storage. Supercapacitors are used in electric vehicles, mobile phones, digital cameras, wearable devices, portable devices and uninterruptible power supplies (UPS) etc. Here, we have reported the binder free carbon cloth supported polyaniline/reduced graphene oxide (PRGO) composite hydrogel as a high performance supercapacitor electrode synthesized by a facile chemical polymerization method using phytic acid (PA). The electrochemical performance of binder free carbon cloth based PRGO composite hydrogel electrode has been analysed using cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) techniques. The high specific capacitance (CS) ~ 235.32 F g-1 has been obtained for the PRGO composite hydrogel @cc in 1 M H2SO4. The electrochemical results show that the binder free carbon cloth based PRGO composite hydrogel electrode is a promising candidate for supercapacitors.