Open Access
Subscription Access
Cost-effective Programmable Logic Arrays Using Multilayer Structures of Decoders in QCA Framework
The emerging nanotechnology paradigm, Quantum Dot Cellular Automata (QCA) in particular, is gaining a wide recognition due to its high speed, nano feature size and considerably low power consumption. The QCA architecture not only provide potential alternative for Complementary Metal Oxide Semiconductor (CMOS) circuits but its multilayer topology facilitates an added benefit of cost efficacy and immunity towards random interference. Moreover, design of programmable logic devices in QCA is vital topromote the multi-utility and resiliency of the computing circuits. This paper presents the multilayer designs of 2×4 and 3×8 decoder circuits in QCA framework with 55.1% and 51.17% better cost efficiency respectively, over the earlier reported designs. The presented 3×8 decoder circuit is further utilized to implement Programmable Logic Array (PLA) to realize Boolean functions of adder and subtractor. The presented circuits are cost effective and showcase the significance of programmable devices in nano-computing.
Keywords
QCA; PLA; Decoder; Adder; Subtractor
User
Font Size
Information
- Lent C S & Snider G L, Field-Coupled Computing, in Lecture notes in Computer Science: Edited by Anderson N G & Bhanja S (Springer Berlin Verlag), 8280 (2014) 3.
- Lent C S, Taugaw P D, Porod W & Bernstein G H, Nanotechnology, 4 (1993) 49.
- Seminario J M, Derosa P A, Cordova L E & Bozard B H, IEEE Trans Nanotechnol, 3 (2004) 215.
- Lent C S & Tougaw P D, A Device Architecture for Computing with Quantum Dots, 85 (1997) 541.
- Orlov A O, Amlani I, Bernstein G H, Lent C S & Snider G L, Science, 277 (1997) 928.
- Amlani I, Orlov A O, Toth G, Bernstein G H, Lent C S & Snider G L, Science, 284 (1999) 289.
- Dilabio G A, Wolkow R A, Pitters J L & Piva G, Atom Quantum Dots (2015).
- Perez-Martinez F, Farrer I, Anderson D, Jones G A C, Ritchie D A, Chorley S J & Smith C G, Appl Phys Lett, 91 (2007) 2005.
- Haider M B, Pitters J L, Dilabio G A, Livadaru L, Mutus J Y & Wolkow R A, Phys Rev Lett, 102 (2009) 2.
- Lent C S, Isaksen B & Lieberman M, J Am Chem Soc, 125 (2003) 1056.
- Porod W, Lent C S, Bernstein G, Orlov A O, Amlani I, Snider G L & Merz J L, Int J Electron, 86 (1999) 549.
- Walus K, Schulhof G & Jullien G A, High level exploration of quantum-dot cellular automata (QCA) (2004) 30.
- Gladshtein M, ACM J Emerg Technol Comput Syst, 10 (2014) 13.
- Gin A, Tougaw P D & Williams S, J Appl Phys, 85 (1999) 8281.
- Sen B, Rajoria A & Sikdar B K, Sci World J, 2013 (2013) 1.
- Sen B, Nag A, De A & Sikdar B K, IEEE India Conf INDICON, 2 (2013) 1.
- Sen B, Nag A, De A & Sikdar B K, J Comput Sci, 11 (2015) 233.
- Babaie S, Sadoghifar A & Bahar A N, IEEE Trans Circuits Syst II, 66 (2019) 963.
- Ghosh B, Chandra J S & Salimath A, J Circuits Syst Comput, 23 (2014) 1.
- Divshali M N, Rezai A & Karimi A, Int J Theor Phys, 57 (2018) 3326.
- Singh R & Sharma D K, Circuit World, 47 (2021) 31.
- Kianpour M & Sabbaghi-Nadooshan R, Int Conf Nanosci Technol Soc Implic, (2011) 1.
- Banerjee S, Bhattacharya J, Chatterjee R, Bagchi P, Mondal S, Bandyopadhyay R, Dutta R & Das P 7th IEEE Annu Inf Technol Electron Mob Commun Conf, 3 (2016).
- Sherizadeh R & Navimipour N J, Optik (Stuttg), 158 (2018) 477.
- Deng F, Xie G, Zhu R & Zhang Y, J Supercomput, 76 (2020) 2842.
- Kumar M & Sasamal T N, Energy Procedia, 117 (2017) 450.
- De D, Purkayastha T & Chattopadhyay T, Microelectronics J, 55 (2016) 92.
- Mukherjee C, Pramanik S, Chakraborty R & De D, Int Conf High Perform Comput Appl ICHPCA 2014, (2015).
- Walus K, Dysart T J, Jullien G A & Budiman R A, IEEE Trans Nanotechnol, 3 (2004) 26.
Abstract Views: 137
PDF Views: 88