Open Access Open Access  Restricted Access Subscription Access

Synthesis, Computational, FT-IR, NMR and UV-Vis Spectral Studies of Bioactive 2-(4-Fluorophenyl)-4-(4-(4-Methoxyphenyl)-5-(3-Nitrophenyl)-4H-1,2, 4-Triazol-3-Yl)Quinoline


Affiliations
1 Department of Chemistry, Lucknow University, Lucknow 226 007, India
 

The work describes synthesis of a bioactive molecule 2-(4-fluorophenyl)-4-(4-(4-methoxyphenyl)-5-(3-nitrophenyl)-4H-1, 2, 4-triazol-3-yl)quinoline. The characterization has been done with the help of various spectroscopic techniques followed by in-silico studies including various structural parameters viz. electrostatic potential, electrophilicity (ω), chemical potential (μ), chemical hardness (η), thermodynamic properties at various temperatures, Natural bond orbital (NBO), Non-linear optical (NLO), electric dipole moment, polarizability and first static hyperpolarizability. Reactivity descriptors were also investigated to find out the sites liable for electrophilic and nucleophilic attack. The compound was also bio-evaluated for its antimicrobial and antioxidant activity. It showed significant activity against S. typhi and a positive antioxidant activity shown by reduction in color with percentage inhibition of 89%.

Keywords

Spectroscopic, Hyperpolarizability, Electrophilicity, Electrostatic, Thermodynamics.
User
Notifications
Font Size

  • Ventura M C, Kassab E, Buntinx G & Poizat, Phys Chem Chem Phys, 2 (2000) 4682.
  • Shin D N, Hahn J W, Jung K H & Ha T K, J Raman Spectrosc, 29 (1998) 245.
  • Giese B & Naughton D Mc, Phys Chem Chem Phys, 4 (2002) 5161.
  • Parr R G & Yang W, Density functional theory of atoms and molecules, Oxford University Press, New York, 1989.
  • Praveena C H L, Rani V E, Spoorthy Y N & Ravindranath L K, J Chem Pharm Res, 5 ( 2013) 280.
  • Shah P J, Patel H S & Patel B P, J Saudi Chem Soc, 17 (2013) 307.
  • Zonios D I & Bennett D, Care Med, 29 (2008) 198.
  • Dismukes W E, Clin Infect Dis, 30 (2000) 653.
  • Finar I L, Organic Chemistry: Stereochemistry and the Chemistry of Natural Product, 2 (1962) 621.
  • Varvarason A, Kakoulidou A T, Papastasikoudi S & Tiligada E, Arzneim Forsch, 50 (2000) 48.
  • Gokce M, Cakir B, Earl K & Sahin M, Arch Pharm, 334 (2001) 279.
  • Pintilie O, Profire L, Sunel V, Popa M & Pui A, Molecules, 12 (2007) 103.
  • Zhou X J, Lai L H, Ji G Y & Zhang Z X, J Agric Food Chem, 50 (2002) 3757.
  • Chem H, Li Z & Han Y, J Agric Food Chem, 48 (2000) 5312.
  • Passannanti A, Diana P, Barraja P, Mingoia F, Lauria A & Cirrincione G, Heterocycles, 48 (1998) 1229.
  • Hosur M C, Talwar M B, Bennur R S, Benur S C, Patil P A & Sambrekar S, Ind J Pharm Sci, 55 (1993) 86.
  • Udupi R H, Kulkarni V M, Purushottamachar P & Srinivasalu N, J Indian Chem Soc, 79 (2002) 381.
  • Mhasalkar M Y, Shah M H, Nikam S T, Anantanarayanan K G & Deliwala C V, J Med Chem, 14 (1971) 260.
  • Mullican M D, Wilson M W, Connor D T, Schrier D J & Dyer R D, J Med Chem, 36 (1993) 1090.
  • Mhasalkar M Y, Shah M H, Nikam S T, Anantanarayanan K G, Deliwda C V, J Med Chem, 13 (4) 672.
  • Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J. Gomperts R., Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O, Foresman J B, Ortiz J V, Cioslowski J, Fox D J, Gaussian-09, Revision A.02. Gaussian, Inc., Wallingford CT, 2009.
  • Schlegel H B, J Comput Chem, 3 (1982) 214.
  • Chaitanya K, Santhamma C, Prasad K & Veeraiah V, Journal of Atomic and Molecular Sciences, 3 (2012) 1.
  • Holla B S, Poojary K N, Poojary B, Bhat K S, Kumari N S, Indian J Chem, 44 (2005) 2114.
  • Lutz R, Bailey P, Clark M, Codington J, Deinet A, Freek J, Harnert G, Leake N, Martin T, Rowlett R, Salsbury J, Shearer N, Smith J & Wilson J, J Am Chem Soc, 68 (1946) 1813.
  • Hoi N P B, Royer R, Xuong N D & Jacquignon P, J Org Chem, 18 (1953) 1209-1224.
  • Olasunkanmi L O, Ige J & Ogunlusi G O, J Chem, (2013) 1.
  • Patel U H, Gandhi S A, J Pure & Appl Phys, 49 (2011) 263.
  • Schuchardt K L, Didier B T, Elsethagen T, Sun L, Gurumoorthi V, Chase J, Li J & Windus T L, J Chem Inf Model, 47 (2007) 1045.
  • Politzer P & Murray J S, Theoretical biochemistry and molecular biophysics: A comprehensive survey, in D. L. Beveridge, R. Lavery Eds., 1991.
  • Gupta V P, Sharma A, Virdi V, Ram V J, J Spectrochim Acta, 64 (2006) 57.
  • Glendening E D, Reed A E, Carpenter J E & Weinhold F, NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.
  • Reed A E, Curtis L A & Weinhold F, Chem Rev, 88 (1988) 899.
  • Andraud C, Brotin T, Garcia C, Pelle F, Goldner P, Bigot B & Collet A, J Am Chem Soc, 116 (1994) 2094.
  • Nakano M, Fujita H, Takahata M & Yamaguchi K, J Am Chem Soc, 124 (2002) 9648.
  • Geskin V M, Lambert C & Bredas J L, J Am Chem Soc, 125 (2003) 15651.
  • Kleinman D A, Phys Rev, 126 (1962) 1977.
  • Zhang R, Du B, Sun G & Sun Y, J Spectrochim Acta, 75 (2010) 1115.
  • Ott J B & Goates J B, Calculations from statistical thermodynamics, Academic Press, 2000.
  • Sajan D, Josepha L, Vijayan N & Karabacak M, J Spectrochim Acta, 81 (2011) 85.
  • Fleming I, Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, New York, 1976.
  • Parr R G, Szentpaly L & Liu S, J Am Chem Soc, 121 (1999) 1922.
  • Chattaraj K & Giri S, J Phys Chem A, 111 (2007) 11116.
  • Vipra A, Desai S N, Junjappa R P, Roy P, Poonacha N, Ravinder P, Sriram B & Padmanabhan S, Adv Microbiol, 3 (2013) 181.
  • Gangwar M, Gautam M K, Sharma A K, Tripathi Y B, Goel R K & Nath G, The Sci World J, (2014) 1.

Abstract Views: 144

PDF Views: 89




  • Synthesis, Computational, FT-IR, NMR and UV-Vis Spectral Studies of Bioactive 2-(4-Fluorophenyl)-4-(4-(4-Methoxyphenyl)-5-(3-Nitrophenyl)-4H-1,2, 4-Triazol-3-Yl)Quinoline

Abstract Views: 144  |  PDF Views: 89

Authors

Shraddha Shukla
Department of Chemistry, Lucknow University, Lucknow 226 007, India
Anil Kumar Verma
Department of Chemistry, Lucknow University, Lucknow 226 007, India
Abha Bishnoi
Department of Chemistry, Lucknow University, Lucknow 226 007, India
Poornima Devi
Department of Chemistry, Lucknow University, Lucknow 226 007, India
Sonam Rai
Department of Chemistry, Lucknow University, Lucknow 226 007, India

Abstract


The work describes synthesis of a bioactive molecule 2-(4-fluorophenyl)-4-(4-(4-methoxyphenyl)-5-(3-nitrophenyl)-4H-1, 2, 4-triazol-3-yl)quinoline. The characterization has been done with the help of various spectroscopic techniques followed by in-silico studies including various structural parameters viz. electrostatic potential, electrophilicity (ω), chemical potential (μ), chemical hardness (η), thermodynamic properties at various temperatures, Natural bond orbital (NBO), Non-linear optical (NLO), electric dipole moment, polarizability and first static hyperpolarizability. Reactivity descriptors were also investigated to find out the sites liable for electrophilic and nucleophilic attack. The compound was also bio-evaluated for its antimicrobial and antioxidant activity. It showed significant activity against S. typhi and a positive antioxidant activity shown by reduction in color with percentage inhibition of 89%.

Keywords


Spectroscopic, Hyperpolarizability, Electrophilicity, Electrostatic, Thermodynamics.

References