Open Access Open Access  Restricted Access Subscription Access

Calculation of the Surface Charge Concentration on the Argon’s Dielectric Barrier Discharge : Effect of the Amplitude Voltage


Affiliations
1 University of Saïda, Faculty of Technology, Department of Electrical Engineering, 20000 Saïda, Algeria
2 Rue Dominique Clos, 31300 Toulouse, France
 

In this work, we study the argon dielectric barrier discharge with metastable atom density on capacitively coupled radio frequency at a pressure of 1 Torr. The parameter transports of argon are depending on the electron energy and their range is about of 0.04-42 eV. A one-dimensional fluid model and the drift-diffusion theory are used to describe the argon dielectric barrier discharge. The effect of the amplitude voltage on the properties of argon dielectric barrier discharge is presented on the cycle-averaged regime. Especially the electron temperature, electric potential and metastable atom density illustrate our results on figures of merits. Consequently, these quantities increase with the increasing of the amplitude voltage. Besides surface charge concentration and the gap voltage increase too.

Keywords

Physics of Gases, Plasmas, Electric Discharges.
User
Notifications
Font Size

  • Samir T, Liu Y, Zhao L L & Zhou Y W, Chin Phys B, 26 (2017) 115201.
  • Donko Z, Phys Rev E, 57 (1998) 7126.
  • Bouchikhi A, Indian J Pure Appl Phys, 60 (2022) 163.
  • Zhao L L, Liu Y & Samir T, Chin Phys B, 26 (2017) 125201.
  • Meyyappan M & Kreskovsky J P L, J Appl Phys, 68 (1990) 1506.
  • Hechelef B & Bouchikhi A, Acta Physica Polonica A, 136 (2019) 855.
  • Becker M M & Loffhagen D, AIP Advances, 3 (2013) 012108.
  • Alili T, Bouchikhi A & Rizouga M, Can J Phys, 94 (2016) 731.
  • Becker M M, Loffhagen D & Schmidt W, Comput Phys Commun, 180 (2009) 1230.
  • Hechelef B & Bouchikhi A, Plasma Sci Technol, 20 (2018) 115401.
  • Bouchikhi A, Can J Phys, 96, (2018) 62.
  • Bouchikhi A, IEEE Trans Plasma Science, 9 (2019) 4260.
  • Bouchikhi A, Plasma Sci Technol, 19 (2017) 095403.
  • Lin Y & Adomaitis R A, J Comp Phys, 171 (2001) 731.
  • Loffhagen D, Becker M M, Czerny A K, Philipp J & Klages C, Contrib Plasma Phys, 58 (2018) 337.
  • Ponduri S, Becker M M, Welzel S, van de Sanden M C M, Loffhagen D & Engeln R, J Appl Phys, 119 (2016) 093301.
  • H€oft H, Kettlitz M, Becker M M, Hoder T, Loffhagen D, Brandenburg R & Weltmann K D, J Phys D Appl Phys, 47 (2014) 465206.
  • Eslami E, Barjasteh A & Morshedian N, Plasma Phys Rep, 41 (2015) 519.
  • Becker M M, Hoder T, Brandenburg R & Loffhagen D, J Phys D Appl Phys, 46 (2013) 355203.
  • Samir T, Liu Y & Zhao L L, IEEE Trans Plasma Science, 46 (2018) 1738.
  • Liu Q, Liu Y, Samir T & Ma Z, Phys Plasmas, 21 (2014) 083511.
  • Becker M M, Kählert H, Sun A, Bonitz M & Loffhagen D, Plasma Sources Sci Technol, 26 (2017) 044001.
  • Barjasteh A & Eslami E, Plasma Chem Plasma Process, 38 (2018) 261.
  • Barjasteh A, Eslami E & Morshedian N, Phys Plasmas, 22 (2015) 073508.
  • Kolokolov N B, Kudrjavtsev A A & Blagoev A B, Phys Scri, 50 (1994) 371.
  • Rafatov I, Bogdanov E A & Kudryavtsev A A, Phys of Plasma, 19 (2012) 093503.
  • Hagelaar G J M & Pitchford L C, Plasma Sources Sci Technol, 14 (2005) 722.
  • http://nl.lxcat.net/home/
  • Vriens L & Smeets A H M, Phys Rev A, 22 (1980) 940.
  • Van G W & Bogaerts A, J Phys D Appl Phys, 47 (2014) 079502.
  • Bouchikhi A & Hamid A, Plasma Sci Technol, 12 (2010) 59.
  • Bouchikhi A, Plasma Sci. Technol, 14 (2012) 965.
  • Hagelaar G J M, Kroesen G M W, van Slooten U & Schreuders H, J Appl Phys, 88 (2000) 2252.
  • Golant V E, Zilinskij A P, Sacharov I E & Brown S C, Fundamentals of Plasma Physics, New York: Wiley, (1980).
  • Scharfetter D L & Gummel H K, IEEE Trans Elec Dev, 16 (1969) 64.
  • Bouchikhi A, Indian J Phys, 94 (2020) 353.
  • Bouchikhi A, Indian J Phys, 96 (2022) 1443.
  • Phelps A & Petrovic´ Z, Plasma Sources Sci Technol, 8 (1999) R21.
  • Park S K & Economou D J, J Appl Phys, 68 (1990) 4888.
  • Meyyappan M & Govindan T R, J Appl Phys, 74 (1993) 2250.
  • Hwang S W, Lee H J & Lee H J, Plasma Sources Sci Technol, 23 (2014) 065040.
  • Surendra M & Vender D, Appl Phys Lett, 65 (1994) 153.
  • Surendra M, Graves D & Plano L, J Appl Phys, 71 (1992) 5189.

Abstract Views: 145

PDF Views: 96




  • Calculation of the Surface Charge Concentration on the Argon’s Dielectric Barrier Discharge : Effect of the Amplitude Voltage

Abstract Views: 145  |  PDF Views: 96

Authors

Abdelaziz Bouchikhi
University of Saïda, Faculty of Technology, Department of Electrical Engineering, 20000 Saïda, Algeria
Abdelkhalek Bouchikhi
Rue Dominique Clos, 31300 Toulouse, France

Abstract


In this work, we study the argon dielectric barrier discharge with metastable atom density on capacitively coupled radio frequency at a pressure of 1 Torr. The parameter transports of argon are depending on the electron energy and their range is about of 0.04-42 eV. A one-dimensional fluid model and the drift-diffusion theory are used to describe the argon dielectric barrier discharge. The effect of the amplitude voltage on the properties of argon dielectric barrier discharge is presented on the cycle-averaged regime. Especially the electron temperature, electric potential and metastable atom density illustrate our results on figures of merits. Consequently, these quantities increase with the increasing of the amplitude voltage. Besides surface charge concentration and the gap voltage increase too.

Keywords


Physics of Gases, Plasmas, Electric Discharges.

References