Open Access Open Access  Restricted Access Subscription Access

Soft Chemical Fabrication and Material Characterization of Mn Doped SnO2 Ceramic Nanostructures for Application in Photocatalysis


Affiliations
1 Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore, Tamil Nadu– 641 114, India
2 Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, Krishnankoil, Tamil Nadu- 626 126, India
 

In this research work, a simple soft chemical synthesis route is adopted to synthesize (Sn1-xMnxO2-δ; where x=0, 0.05, 0.10, 0.15 and 0.20) based ceramic nanoparticles. The prepared nanoparticles were characterized to X-ray diffraction (XRD), FTIR spectroscopy, particle size analysis, SEM, EDAX, UV and photoluminescence (PL) studies. From XRD, the crystalline geometry of ceramic nanoparticles was found to be tetragonal. FTIR data have shown a broad absorption band at a wavelength of ~ 600 cm-1 due to M-O stretching vibration mode. The ceramic nanoparticles were found to be in the range of 704 to 1258 nm. Smaller grains Sn0.95Mn0.05o2-δ exhibited better photocatalytic degradation behavior (84.8%) under visible light after 120 minutes of irradiation.

Keywords

Mn Doped SnO2, Chemical Synthesis, Characterization, Photocatalysis, Methylene Blue.
User
Notifications
Font Size

  • Khan I, Saeed K & Khan I, Arab J Chem, 12 (2019) 908.
  • Baig N, Kammakakam I & Falath W, Mater Adv, 2 (2021)1821.
  • Guo D, Xie G & Luo J, J Phys D Appl Phys, 47 (2014) 013001.
  • Kujawa J & Kujawski W, ACS Appl Mater Interfaces, 8 (2016) 7509.
  • Gebreslassie Y T & Gebretnsae H G, Nanoscale Res Lett, 16 (2021) 97.
  • Bala Subbaiah G, Venkata Ratnam K, Janardhan S, Shiprath K, Manjunatha H, Ramesha M, Krishna P N V, Ramesh S & Anil B T, Front Mater, 8 (2021) 682025.
  • Umashanker L, Bharathesh T P, Roopashree C & Saravanan R, IOP Conf Ser Mater Sci Eng, 1189 (2021) 012015.
  • Ficai D, Oprea O, Ficai A & Holban AM, Curr Proteomics, 11 (2014) 139.
  • García M C, Torres J, Córdoba A V D, Longhi M & Uberman P M, Metal Oxides for Biomedical and Biosensor Applications, (2022) 35.
  • Cartwright A, Jackson K, Morgan C, Anderson A & Britt DW, Agronomy, 10 (2020) 1018.
  • Lu H, Wang J, Stoller M, Wang T, Bao Y & Hao H, Adv Mater Sci Eng, (2016) 4964828.
  • Chavali M S & Nikolva M P, SN Appl Sci, 1 (2019) 607.
  • Honarmand M, Golmohammadi M & Bakhtiari J H, Environ Sci Pollu Res, 28 (2021) 7123.
  • Ayeshamariam A, Vidhya VS, Sivaranjani S, Bououdina M, Perumal Samy R & Jayachandran M, J Nanoelectron Optoelectron, 8 (2013)1.
  • Karmaoui M, Jorge A B, McMillan P F, Aliev A E, Pullar R C, Labrincha J A & Tobaldi D M, ACS Omega, 3 (2018) 13227.
  • Krishnakumar T, Jayaprakash R, Singh V N, Mehta B R & Phani A R, J Nano Res, 4 (2009) 91.
  • Tazikeh S, Akbari A, Talebi A & Talebi E, Mater Sci – Pol, 32 (2014) 98.
  • Bhattacharjee A, Ahmaruzzaman Md & Sinha T, RSC Adv, 14 (2014) 51418.
  • Akhir M A M, Mohamed K, Lee H L & Rezan S A, Procedia Chem, 19 (2016) 993.
  • Durga P P, Reddy S P, Deepthi A, Prashanthi J & Rao GN, Int J Nanotechnol Appl, 11 (2017) 265.
  • Wan W, Li Y, Ren X, Zhao Y, Gao F & Zhao H, Nanomater. (Basel), 8 (2018) 112.
  • Liu Y, Jiao Y, Qu F, Gong L & Wu X, J Nanomater, (2013) 610964.
  • Inderan V, Lim S Y, Ong T S, Bastien S, Braidy N & Lee H L, Superlattices Microstruct, 88 (2015) 396.
  • Shehzad K, Shah NA, Amin M, Abbas M & Syed WA, Int J Distrib Sens Netw, 14 (2018) 1.
  • Meng X, Zhou M, Li X, Yao J, Liu F, He H, Xiao P & Zhang Y, Electrochim Acta, 109 (2013) 20.
  • Mali S S, Patil J V, Kim H & Hong C K, Nanoscale, 10 (2018) 8275.
  • Sharma D, Tripathi S, Panwar R S, Dhillon G, Bhatia A K, Vashisht D, Mehta S K & Kumar N, Vacuum, 184 (2021) 109925.
  • Bae J Y, Park J, Kim H Y, Kim H S & Park J S, ACS Appl Mater Interfaces, 7 (2015) 12074.
  • Aziz M, Abbas S S & Baharom W R W, Mater Lett, 91 (2013) 31.
  • Farrukh M A, Heng B T & Adnan R, Turk J Chem, 34 (2020) 537.
  • Mourdikoudis S, Pallares R M & Thanh N T K, Nanoscale, 10 (2018) 12871.
  • Belyakov AV, Refract Ind Ceram, 60 (2020) 574.
  • Sarangi N, Pradhan G K & Samal D, J Alloys Compd, 762 (2018)16.
  • Wang Y, Yu Y, Zou Y, Zhang L, Hu L & Chen D, RSC Adv, 8 (2018) 4921.
  • Prakash K, Senthil Kumar P, Pandiaraj S, Saravanakumar K & Karuthapandian S, J Exp Nanosci, 11 (2016) 1138.

Abstract Views: 141

PDF Views: 85




  • Soft Chemical Fabrication and Material Characterization of Mn Doped SnO2 Ceramic Nanostructures for Application in Photocatalysis

Abstract Views: 141  |  PDF Views: 85

Authors

Niviya Rajan
Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore, Tamil Nadu– 641 114, India
Arputharaj Samson Nesaraj
Department of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, Krishnankoil, Tamil Nadu- 626 126, India
Manasai Arunkumar
Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Karunya Nagar, Coimbatore, Tamil Nadu– 641 114, India

Abstract


In this research work, a simple soft chemical synthesis route is adopted to synthesize (Sn1-xMnxO2-δ; where x=0, 0.05, 0.10, 0.15 and 0.20) based ceramic nanoparticles. The prepared nanoparticles were characterized to X-ray diffraction (XRD), FTIR spectroscopy, particle size analysis, SEM, EDAX, UV and photoluminescence (PL) studies. From XRD, the crystalline geometry of ceramic nanoparticles was found to be tetragonal. FTIR data have shown a broad absorption band at a wavelength of ~ 600 cm-1 due to M-O stretching vibration mode. The ceramic nanoparticles were found to be in the range of 704 to 1258 nm. Smaller grains Sn0.95Mn0.05o2-δ exhibited better photocatalytic degradation behavior (84.8%) under visible light after 120 minutes of irradiation.

Keywords


Mn Doped SnO2, Chemical Synthesis, Characterization, Photocatalysis, Methylene Blue.

References