The PDF file you selected should load here if your Web browser has a PDF reader plug-in installed (for example, a recent version of Adobe Acrobat Reader).

If you would like more information about how to print, save, and work with PDFs, Highwire Press provides a helpful Frequently Asked Questions about PDFs.

Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

Fullscreen Fullscreen Off


In this research work, a simple soft chemical synthesis route is adopted to synthesize (Sn1-xMnxO2-δ; where x=0, 0.05, 0.10, 0.15 and 0.20) based ceramic nanoparticles. The prepared nanoparticles were characterized to X-ray diffraction (XRD), FTIR spectroscopy, particle size analysis, SEM, EDAX, UV and photoluminescence (PL) studies. From XRD, the crystalline geometry of ceramic nanoparticles was found to be tetragonal. FTIR data have shown a broad absorption band at a wavelength of ~ 600 cm-1 due to M-O stretching vibration mode. The ceramic nanoparticles were found to be in the range of 704 to 1258 nm. Smaller grains Sn0.95Mn0.05o2-δ exhibited better photocatalytic degradation behavior (84.8%) under visible light after 120 minutes of irradiation.

Keywords

Mn Doped SnO2, Chemical Synthesis, Characterization, Photocatalysis, Methylene Blue.
User
Notifications
Font Size