Open Access Open Access  Restricted Access Subscription Access

The Effect of Different Molar Ratios of CeO2 on Photoluminescence Properties of CeO2/TiO2 Nanoparticles


Affiliations
1 Mustafa Çıkrıkcıoğlu Vocational School, Department of Chemistry and Chemical Processing Technologies, Kayseri University, Kayseri, Turkey
2 Faculty of Engineering, Metallurgy and Materials Engineering Department, Ondokuz Mayıs University, Samsun, Turkey
3 Department of Energy System Engineering, Kahramanmaraş İstiklal University, 46000, Kahramanmaraş, Turkey
4 Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
 

The CeO2-TiO2 nanoparticles were prepared by a combination of hydrothermal and sol-gel preparation methods. The bond structures and crystal properties of the obtained materials were featured with X-ray diffraction, FTIR, Raman, and Bet analysis; surface morphologies were examined with the help of FESEM and STEM. And finally, the PL properties of the synthesized samples were also examined in this study. The excitation and emission spectra of 0.1 mol% and 0.25 mol% CeO2 doped TiO2 phosphors consist of broad bands in the UV (200–300 nm) region with maxima at 254 nm. The excitation band at 254 nm is defined as the charge transfer band (CTB). In the emission spectra, a broadband located from 400 to 700 nm is related to the 5d-4f (5d1→4f1) transition of Ce3+ in TiO2. According to the PL result, the 5d–4f transition of Ce3+ is heavily dependent on the concentration of Ce3+ in the host crystal TiO2.

Keywords

Photoluminescence Properties, CeO2/TiO2, Nanoparticle.
User
Notifications
Font Size

  • Shinar J, Organic Light-Emitting Devices, Springer, New York (2003).
  • Miller R D & Chandross E A, Mater Electron Chem Rev, 110 (2010) 1.
  • Koch N, Chem Phys Chem, 8 (2007) 1438.
  • Holm R H & O'Connor M J, Prog Inorg Chem, 14 (1971) 241.
  • Garnovskii A D, Nivorozhkin A L & Minkin V I, Coord Chem Rev, 126 (1993) 1.
  • Fujishima A, Nature, 238 (1972) 37.
  • Watanabe M, Hayashi T, Yagasaki H & Sasaki S, Int J Mod Phys B, 15 (2001) 3997.
  • Kaniyankandy S & Ghosh H N, J Mat Chem, 19 (2009) 3523.
  • Stevanovic A, Büttner M, Zhang Z & Yates J T, J Am Chem Soc, 134 (2012) 324.
  • Stepanov A L, Rev Adv Mater Sci, 30 (2012) 150.
  • Gomez P R, Palmero A, Ben T, Lozano J G, Molina S I & Gonzalez E A R, Phys Rev B, 82 (2010) 115420.
  • Dutta P K, Ginwalla A, Hogg B, Patton B R, Chwieroth B, Liang Z, et al., J Phys Chem B, 103 (1999) 4412.
  • Xu Y, Yao K, Zhou X & Cao Q, Sens Actuators B, 14 (1993) 492.
  • Phillips L G & Barbano D M, J Dairy Sci, 80 (1997) 2726.
  • Tryk D A, Fujishima A & Honda K, Electrochim Acta, 45 (2000) 2363.
  • Kuznetsov V N & Serpone N, J Phys Chem C, 113 (2009) 15110.
  • Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi C L, Psaro R & Santo V D, J Am Chem Soc, 134 (2012) 7600.
  • Liu X, Gao S, Xu H, Lou Z, Wang W, Huang B & Dai Y, Nanoscale, 5 (2013) 1870.
  • Chen X & Burda C, J Am Chem Soc, 130 (2008) 5018.
  • Yeh M S, Yang Y S, Lee Y P, Lee H F, Yeh Y H & Yeh C S, J Phys Chem B, 103 (1999) 6851.
  • Shahriari E, Yunus W M M & Saion E, Braz J Phys, 40 (2010) 256.
  • Ponce A A & Klabunde K J, J Mol Catal A: Chem, 225 (2005) 1.
  • Iranpoor N, Firouzabadi H, Safavi A, Motevalli S & Doroodmand M M, Appl Organomet Chem, 26 (2012) 417.
  • Kowlgi K, Lafont U, Rappolt M & Koper G, J Colloid Interf Sci, 372 (2012) 16.
  • Khan Z, Al-Thabaiti S A, Obaid A Y & Al-Youbi A O, Colloids Surf B, 82 (2011) 513.
  • Gomez P R, Palmero A, Ben T, Lozano J G, Molina S I & Gonzalez E A R, Phys Rev B, 82 (2010) 115420.
  • Bavykin D V, Friedrich J M & Walsh F C, Adv Mater, 18 (2006) 2807.
  • Chetibi L, Hamana D & Achour S, Mater Chem Phys, 144 (2014) 301.
  • Chunyan J, Liu B, Zhongxiang L & Jiaming S, Nanoscale Res Lett, 10 (2015) 1.
  • Chen J, Herricks T & Xia Y, Chem Int Ed, 44 (2005) 2589.
  • Uzun E, Öztürk E, Ozpozan K N & Karacaoglu E, J Lumin, 173 (2016) 73.
  • Öztürk E & Ozpozan K N, J Therm Anal Calorim, 117 (2014) 573.
  • Crossland E J W, Noel N, Sivaram V, Leijtens T, Alexander-Webber J A & Snaith H J, Nature, 495 (2013) 215.
  • Luo W Q, Li R F & Chen X Y, J Phys Chem C, 113 (2009) 8772.
  • Chang M Q, Song Y H, Zhang H G, Sheng Y, Zheng K Y, Zhou X Q & Zou H F, RSC Adv, 5 (2015) 59314.
  • Yoo J B, Yoo H J, Lim B W, Lee K H, Kim M H, Kang D & Hur N H, ChemSusChem, 5 (2012) 2334.
  • Stojadinovic S, Radic N, Grbic B, Maletic S, Stefanov P, Pacevski A & Rastko V R, Appl Surf Sci,70 (2016) 218.
  • Komaraiah D, Radha E, James J, Kalarikkal N, Sivakumar, J Ramana https://www.sciencedirect.com/science/article/pii/S0022231318315503 - !R M V & Sayanna R,https://www. sciencedirect.com/science/article/pii/S0022231318315503 - ! J Lumin, 211 (2019) 320.
  • Dokan F K & Kuru M, Mater Sci: Mater Electron, 32 (2021) 640.
  • Bokuniaeva A O & Vorokh A S, J Phys Conf Ser, 1410 (2019) 012057.
  • Muñoz-Batista M J, Gomez-Cerezo M N, Kubacka A, Tudela D & Fernandez-García M, ACS Catal, 4 (2014) 63.
  • Rožića L, Petrovića S, Lončarević D, Grbić B, Radić N, Stojadinović S, Jović V & Lamovec J, Ceram Int, 45 (2019) 2361.
  • Cano-Franco J C & lvarez-La´inez M A, Mater Sci Semicond Process, 90 (2019) 190.
  • Zhang F, Chan S W, Spanier J E, Apak E, Jin Q, Robinson R D & Herman I P, Appl Phys Lett, 80 (2002) 127.
  • Bersani D, Antonioli G, Lottici P P & Lopez T, J Non Cryst Solids, 175 (1998) 232.
  • Balachandran U & Eror N G, J Solid State Chem, 42 (1982) 276.
  • Lukačević I , Gupta S K , Jha P K & Kirin D , Mater Chem Phys, 137 (2012) 282.
  • Pallotti D K, Passoni L, Maddalena P, Fonzo F D & Lettieri S, J Phys Chem C, 121 (2017) 9011.
  • Stevanovic A & Yates J T, J Phys Chem C, 117 (2013) 24189.
  • Ma S, Reish M E, Zhang Z, Harrison I & Yates J T, J Phys Chem C, 121 (2017) 1263.
  • Oket A N & Yilmaz O, Appl Catal A, 354 (2009) 132.
  • Pavitra E, Raju G S R, Park W & Yu J S, New J Chem, 38 (2014) 163.
  • Bosze E J, McKittrick J & Hirata G A, Mater Sci Eng B, 97 (2003) 265.
  • Öztürk E & Sarılmaz E, Mater Res Exp, 6 (2019) 105710.
  • Uzun E, Öztürk E & Ozpozan K N, Luminescence, 33 (2018) 1346.
  • Öztürk E & Sarılmaz E, Mater Chem Phys, 239 (2020) 122085.
  • Öztürk E, Ozpozan K N & Uzun E, J Chin Chem Soc, 62 (2015) 47.
  • Fa-Chun Lu, Shu-Qing G, Zhi-Ping Y, Yan-Min Y, Pan-Lai L, Xu L & Quan-Lin L, J Alloys Compd, 521 (2012) 77.

Abstract Views: 122

PDF Views: 102




  • The Effect of Different Molar Ratios of CeO2 on Photoluminescence Properties of CeO2/TiO2 Nanoparticles

Abstract Views: 122  |  PDF Views: 102

Authors

Fatma Kiliç Dokan
Mustafa Çıkrıkcıoğlu Vocational School, Department of Chemistry and Chemical Processing Technologies, Kayseri University, Kayseri, Turkey
Mehmet Kuru
Faculty of Engineering, Metallurgy and Materials Engineering Department, Ondokuz Mayıs University, Samsun, Turkey
Handan Özlü Torun
Department of Energy System Engineering, Kahramanmaraş İstiklal University, 46000, Kahramanmaraş, Turkey
Esra Öztürk
Department of Metallurgical and Materials Engineering, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey

Abstract


The CeO2-TiO2 nanoparticles were prepared by a combination of hydrothermal and sol-gel preparation methods. The bond structures and crystal properties of the obtained materials were featured with X-ray diffraction, FTIR, Raman, and Bet analysis; surface morphologies were examined with the help of FESEM and STEM. And finally, the PL properties of the synthesized samples were also examined in this study. The excitation and emission spectra of 0.1 mol% and 0.25 mol% CeO2 doped TiO2 phosphors consist of broad bands in the UV (200–300 nm) region with maxima at 254 nm. The excitation band at 254 nm is defined as the charge transfer band (CTB). In the emission spectra, a broadband located from 400 to 700 nm is related to the 5d-4f (5d1→4f1) transition of Ce3+ in TiO2. According to the PL result, the 5d–4f transition of Ce3+ is heavily dependent on the concentration of Ce3+ in the host crystal TiO2.

Keywords


Photoluminescence Properties, CeO2/TiO2, Nanoparticle.

References