Open Access Open Access  Restricted Access Subscription Access

Multiphysics Experimental Approaches for Insight into the Hydrogen Bonded Structures of Ethylene Glycol and Glycerol Mixtures toward Green Solvent Technology


Affiliations
1 Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur 342 005, India
 

Alcohols and their mixtures are credited most important polar solvents for advances in pharmaceutical, chemical, biological, thermal, and material technologies. A rigorous study for the characterization of hydrogen bonded heterogeneous intermolecular structures that formed in a mixed solvent based on alcohols containing two and three hydroxyl groups molecules is crucial to specific technological and industrial applications. Hence, in this work, the multiphysics experimental approaches including the measurements of dielectric, electrical, viscous, acoustic, thermal, and optical properties are applied and analyzed to confirm the behaviour of hydrogen bonded molecular structures of ethylene glycol (EG; dihydric alcohol) with glycerol (Gl; trihydric alcohol) over the entire concentration range of EG+Gl mixtures at 298.15 K. The static dielectric permittivity, direct current electrical conductivity, low frequency relaxation time, and refractive index values of the EG+Gl mixtures are reported. Additionally, dynamic viscosity, density, ultrasound velocity, adiabatic compressibility, intermolecular free length, acoustic impedance, free volume, Rao’s constant, Wada constant, and viscoacoustic relaxation time of the EG+Gl mixtures are determined, and also explored their significance to these alcohols molecular interactions. Ultraviolet-visible range absorbance behaviour of the alcohol mixtures is characterized in detail and confirmed the electronic transitions at higher energy ultraviolet radiations. The detailed analysis of all the experimental results along with the consideration of excess properties evidenced the formation of heterogeneous intermolecular hydrogen bonded structures in these Newtonian-type alcohols mixtures. A small to adequate variation in the thermodynamical and other investigated properties with the concentration variation showed that the EG+Gl mixture can be optimized as a green solvent according to the prerequisite properties for huge advances in soft condensed matter technologies.

Keywords

Alcohols, Molecular Interaction, Dielectric Properties, Viscosity, Acoustic Parameters, UV-Vis Absorbance.
User
Notifications
Font Size

  • Mehrotra S C, Kumbharkhane A C & Chaudhari A, Elsevier Science Publishing Co. Inc, Cambridge, (2017).
  • Sudo S, Shinyashiki N, Kitsuki Y & Yagihara S, J Phys Chem A, 106 (2002) 458.
  • Rana V A, Shah N S, Shah K N & Vankar H P, J Mol Liq, 369 (2023) 120829.
  • Saknure S H, Garad N P, Gubre A G, Joshi Y S & Kumbharkhane A C, Indian J Pure Appl Phys, 61 (2023) 27.
  • Jia G Z, Jie Q & Feng W, J Mol Struct, 1100 (2015) 354.
  • Chęcińska-Majak D, Klimaszewski K, Stańczyk M, Bald A, Sengwa R J & Choudhary S, J Chem Thermodyn, 102 (2016) 164.
  • Manjula V, Prasad T V, Balakrishna K, Raju K C J & Vishwam T, J Mol Struct, 1227 (2021) 129703.
  • Senthilkumar P, Saravanakannan V, M Sylvester M, Vinoth K, Deshmukh A R, Ganesh T & Kumbharkhane A C, J Mol Liq, 372 (2023) 121129.
  • Mozo I, González J A, Fuente I G de la, Cobos J C & Riesco N, J Mol Liq, 140 (2008). 87.
  • Liu C, Qiao Y, Lv B, Zhang T & Rao Z, Int Commun Heat Mass Transf, 112 (2020) 104491.
  • Vankar H P & Rana V A, J Mol Liq, 254 (2018) 216.
  • Sengwa R J, Choudhary S & Dhatarwal P, J Mol Liq, 252 (2018) 339.
  • Choudhary S, Dhatarwal P & Sengwa R J, J Mol Liq, 231 (2017) 491.
  • Sengwa R J, Dhatarwal P & Choudhary S, J Mol Liq 271 (2018) 128.
  • Iglesias T P & Reis J C R, J Mol Liq, 344 (2021) 117764.
  • Hevia F, Alonso V, González J A, Sanz L F, Fuente I G de la & Cobos J C, J Mol Liq, 322 (2021) 114988.
  • Gilani A G & Dafrazi A A, J Chem Eng Data, 65 (2020) 1886.
  • Jadżyn J & Świergiel J, Ind Eng Chem Res, 51 (2012) 807.
  • Chęcińska-Majak D, Bald A & Sengwa R J, J Mol Liq, 179 (2013) 72.
  • Jansson H, Bergman R & Swenson J, J Mol Struct, 972 (2010) 92.
  • Reis J C R, Iglesias T P, Douhéret G & Davis M I, Phys Chem Chem Phys, 11 (2009). 3977.
  • Sudo S, Shimomura M, Shinyashiki N & Yagihara S, J Non-Cryst Solids, 307–310, (2002) 356.
  • Choudhary S & Sengwa R J, J Mol Liq, 175 (2012) 33.
  • Huaxu L, Fuqiang W, Dong L, Jie Z & Jianyu T, Int J Heat Mass Transf, 128 (2019) 668.
  • Ibrahim P S S, Vinayagam S C, Murugan J S & Jeyakumar J E, J Mol Liq, 304 (2020) 112752.
  • Żyła G & Fal J, Thermochim Acta, 650 (2017) 106.
  • Gangwar J, Srivastava A K, Tripathi S K, Wan M & Yadav R R, Appl Phys Lett, 105 (2014) 063108.
  • Coelho M F, Rivas M A, Nogueira E M & Iglesias T P, J Chem Thermodyn, 158 (2021) 106423.
  • Akilu S, Baheta A T, Said M A M, Minea A A & Sharma K V, Sol Energy Mater Sol Cells, 179 (2018) 118.
  • Sengwa R J, Saraswat M & Dhatarwal P, J Mol Liq, 355 (2022) 118925.
  • Rosa D D, Wanic M, Fal J, Żyła G, Mercatelli L & Sani E, Powder Technol, 356 (2019) 508.
  • Rashin M N & Hemalatha J, J Mol Liq, 197 (2014) 257.
  • Yue H, Zhao Y, Ma X & Gong J, Chem Soc Rev, 41 (2012). 4218.
  • García J I, García-Marín H & Pires E, Green Chem, 16 (2014) 1007.
  • Sengwa R J, Sankhla S & Shinyashiki N, Phys Chem Liq, 48 (2010) 29.
  • Zhang T, Liu C, Gu Y & Jérôme F, Green Chem, 23 (2021) 7865.
  • Sengwa R J, Kaur K & Chaudhary R, Polym Int, 49 (2000) 599.
  • Sengwa R J, Indian J Pure Appl Phys, 41 (2003) 295.
  • Quispe C A G, Coronado C J R & Carvalho J A, Renew Sust Energ Rev, 27 (2013) 475.
  • Sengwa R J, Khatri V, Choudhary S & Sankhla S, J Mol Liq, 154 (2010) 117.
  • Jadżyn J & Świergiel J, J Mol Liq, 293 (2019) 111472.
  • Choudhary S & Sengwa R J, J Mol Liq, 167 (2012) 99.
  • Saraswat M & Sengwa R J, J Mol Liq, 368 (2022) 120671.
  • Murshed S M S & Estellé P, Renew Sustain Energy Rev, 76 (2017) 1134.
  • Sengwa R J & Saraswat M, Particuology, 76 (2023) 46.
  • Prajapati A N, Patel S P & Rana V A, J Mol Liq, 354 (2022) 118832.
  • Gilani A G & Mirkhalili A, J Chem Eng Data, 66 (2021) 3934.
  • Hevia F, Cobos A, González JA, Fuente I G de la & Sanz L F, J Mol Liq, 271 (2018) 704.
  • Sengwa R J, Chaudhary R & Mehrotra S C, Mol Phys, 99 (2001) 1805.
  • Pandey J D, Shukla A K, Singh N & Sanguri V, J Mol Liq, 315 (2020) 113585.
  • Makavana M & Sharma S, J Mol Liq, 222 (2016) 535.
  • Hussain S G M, Kumar R & Kannappan V, J Mol Struct, 1247 (2022) 131283.
  • Chaudhary N & Nain A K, J Mol Liq, 340 (2021) 116866.
  • Nithiyanantham S & Palaniappan L, J Mol Liq, 221 (2016) 401.
  • Belhadj D, Negadi A, Venkatesu P, Bahadur I & Negadi L, J Mol Liq, 330 (2021) 115436.
  • Saini A, Prabhune A, Mishra A P & Dey R, J Mol Liq, 323 (2021) 114593.
  • Kremer F & Schönhals A, Broadband Dielectric Spectroscopy, Springer-Verlag, Berlin, (2003).
  • Sengwa R J, Choudhary S & Dhatarwal P, J Mol Liq, 220 (2016) 1042.
  • Świergiel J, Bouteiller L & Jadżyn J, Ind Eng Chem Res, 52 (2013) 11974.
  • Jadżyn J & Świergiel J, J Phys Chem B, 115 (2011) 6623.
  • Ishai P B, Talary M S, Caduff A, Levy E & Feldman Y, Meas Sci Technol, 24, (2013) 102001.
  • Arrese-Igor S, Alegría A & Colmenero J, J Mol Liq, 318 (2020) 114215.
  • Benito J, Guerrero H, Artigas H, López M C & Lafuente C, J Chem Thermodyn, 86 (2015) 162.
  • Sengwa R J, Sankhla S & Choudhary S, Colloid Polym Sci, 287 (2009) 1013.
  • Świergiel J, Bouteiller L & Jadżyn J, Soft Matter, 10 (2014) 8457.
  • Hevia F, Alonso V, Cobos A, González J A, Sanz L F & Fuente I G de la, J Chem Thermodyn, 168 (2022) 106737.
  • Kumar M, Khan M A, Yadav C P, Pandey D K & Singh D, J Chem Thermodyn, 161 (2021) 106557.
  • Ayachit N H, Vasan S T, Sannaningannavar F M & Deshpande D K, J Mol Liq, 133 (2007) 134.
  • Reis J C R, Lampreia I, Santos A F S, Moita M L, Douhéret G, Chem Phys Chem, 11 (2010) 3722.
  • Pimentel G C, McClellan A L, The Hydrogen Bond, Freeman W H & Co, San Francisco, (1960).
  • Li H, Wang L, He Y, Hu Y, Zhu J & Jiang B, Appl Therm Eng, 88 (2015) 363.
  • Yan S R, Kalbasi R, Nguyen Q & Karimipour A, J Mol Liq, 308 (2020) 113058.
  • Reis J C R, Santos  F S & Lampreia I M S, Chem Phys Chem, 11 (2010) 508.
  • Parmar D, Botchway C H, Dzade N Y, Kumari K, Maken S, Rani M & Kumar N, J Mol Liq, 347 (2022) 118279.
  • Douhéret G, Davis M I, Reis J C R & Blandamer M J, Chem Phys Chem, 2 (2001) 148.
  • Anu K & Hemalatha J, J Mol Liq, 256 (2018) 213.
  • Jacobson B, J Chem Phys, 20 (1952) 927.
  • Santhi N, Sabarathinam P, Alamelumangai G, Madhumitha J & Emayavaramban M, Int Lett Chem Phys Astron, 5 (2012) 1
  • Mukherjee S, Jana S, Mishra P C, Chaudhuri P & Chakrabarty S, Int J Therm Sci, 159 (2021) 106581.
  • Bridgman P W, Proc Am Acad Arts Sci, 59 (1923) 141.
  • Sakiadis B C & Coates J, Studies of thermal conductivity of liquids. Part I, A I Ch E J, 1 (1955) 275.
  • Bird R B, Stewart W E & Lightfoot E N, Transport Phenomena, 2nd Edn, John Wiley & Sons, New York, (2002).
  • Rao M R, J Chem Phys, 9 (1941) 682.
  • Wada Y, J Phys Soc Jpn, 4 (1949) 280.
  • Chithralekha N, Panneerselvam A, Vacuum, 168 (2019) 108835.
  • Kincaid J F, Eyring H, J Chem Phys, 6 (1938) 620.
  • Iglesias T P, Reis J C R & Fariña-Busto L, J Chem Thermodyn, 40 (2008) 1475.
  • Dubey G P & Dhingra L, J Chem Thermodyn, 149 (2020) 106161.
  • Meng X, Li X, Shi H, Wu J & Wu Z, J Mol Liq, 219 (2016) 677.
  • Tong A, Tang X, Zhang F & Wang B, Spectrochim Acta A, 234 (2020) 118259.
  • Li Q, Sha F, Zhao G, Yang M, Zhao L, Zhang Q & Zhang J, J Chem Eng Data, 61 (2016) 1718.
  • Arivazhagan G, Shanmugam R & Thenappan T, J Mol Struct, 990 (2011) 276.
  • Arivazhagan G & Thenappan T, Phys Chem Liq, 49 (2011) 275.
  • Li L, Zhang J, Li Q, Guo B, Zhao T & Sha F, Thermochim Acta, 590 (2014) 91.
  • Kuball H G, Höfer T & Kiesewalter S, Chiroptical spectroscopy, general theory, In Encyclopedia of Spectroscopy and Spectrometry (3rd Edn), Edited by Lindon J, Tranter G E & Koppenaal D, Elsevier Ltd, (2017) 217.
  • Saraswat M & Sengwa R J, Phys E Low-dimen Syst Nanostruct, 150 (2023) 115700.

Abstract Views: 479

PDF Views: 91




  • Multiphysics Experimental Approaches for Insight into the Hydrogen Bonded Structures of Ethylene Glycol and Glycerol Mixtures toward Green Solvent Technology

Abstract Views: 479  |  PDF Views: 91

Authors

Mukul Saraswat
Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur 342 005, India
R J Sengwa
Dielectric Research Laboratory, Department of Physics, Jai Narain Vyas University, Jodhpur 342 005, India

Abstract


Alcohols and their mixtures are credited most important polar solvents for advances in pharmaceutical, chemical, biological, thermal, and material technologies. A rigorous study for the characterization of hydrogen bonded heterogeneous intermolecular structures that formed in a mixed solvent based on alcohols containing two and three hydroxyl groups molecules is crucial to specific technological and industrial applications. Hence, in this work, the multiphysics experimental approaches including the measurements of dielectric, electrical, viscous, acoustic, thermal, and optical properties are applied and analyzed to confirm the behaviour of hydrogen bonded molecular structures of ethylene glycol (EG; dihydric alcohol) with glycerol (Gl; trihydric alcohol) over the entire concentration range of EG+Gl mixtures at 298.15 K. The static dielectric permittivity, direct current electrical conductivity, low frequency relaxation time, and refractive index values of the EG+Gl mixtures are reported. Additionally, dynamic viscosity, density, ultrasound velocity, adiabatic compressibility, intermolecular free length, acoustic impedance, free volume, Rao’s constant, Wada constant, and viscoacoustic relaxation time of the EG+Gl mixtures are determined, and also explored their significance to these alcohols molecular interactions. Ultraviolet-visible range absorbance behaviour of the alcohol mixtures is characterized in detail and confirmed the electronic transitions at higher energy ultraviolet radiations. The detailed analysis of all the experimental results along with the consideration of excess properties evidenced the formation of heterogeneous intermolecular hydrogen bonded structures in these Newtonian-type alcohols mixtures. A small to adequate variation in the thermodynamical and other investigated properties with the concentration variation showed that the EG+Gl mixture can be optimized as a green solvent according to the prerequisite properties for huge advances in soft condensed matter technologies.

Keywords


Alcohols, Molecular Interaction, Dielectric Properties, Viscosity, Acoustic Parameters, UV-Vis Absorbance.

References