Open Access Open Access  Restricted Access Subscription Access

Efficient Coupling of Single Photons into Tilted Nanofiber Bragg Gratings


Affiliations
1 Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, IIT Bhubaneswar, Khurda 752 050, Odisha, India
 

We report a new gateway towards the light-matter interaction of spontaneous emission from a quantum emitter (QE) in optical nanofiber (ONF) based on nanocavities tilted by some angle with respect to the plane of the fiber cross-section. This structure is designed by three-dimensional finite-difference time-domain simulations to enhance the spontaneous emission decay rate from a QE and maximize the coupling efficiency into the fiber-guided modes. Here, we systematically analyzed the polarization-dependent spontaneous emission characteristics of QE and cavity characteristics of the proposed structure. We show that the coupling efficiency from single emitters can reach as high as ~ 90% with the Purcell factor can be as high as ∼ 65. The results show a 10-fold enhancement factor from a QE in the cavity center compared with the cavity surface. The tilted angle can be optimized to get more transmission and coupling efficiency. This tilted structure has a high Q-factor of ~ 1000 and a low mode volume of ~ 0.56 μm3, with a maximum degree of polarization of the single photons has been calculated as high as 96%. For the quantum information and quantum photonics application, this system attracts researchers to a new direction in the quantum world.

Keywords

Tilted Fiber Bragg Grating, Single Photon, cQED.
User
Notifications
Font Size

  • Kimble H J, Nature, 453 (2008) 1023.
  • Yalla R, Sadgrove M, Nayak K P & Hakuta K, Phys Rev Lett, 113 (2014) 143601.
  • Rajasree K S, T Ray, Karlsson K, Everett J L & Chormaic S N, Phys Rev Res, 2 (2020) 12038.
  • Nayak K P, M Sadgrove, Yalla R, Kien F L & Hakuta K, J Opt, 20 (2018) 73001.
  • Lou N, Jha R, Domínguez-Juárez J L, Finazzi V, J Villatoro, Badenes G & Pruneri V, Opt Lett, 35 (2010) 571.
  • Kumar A, Sahu S & Jha R, J Phys D Appl Phys, 55 (2022) 405102.
  • Morrissey M J, Deasy K, Frawley M, Kumar R, Prel E, Russell L, Truong V G & Chormaic S N, Sensors, 13 (2013) 10449.
  • Yalla R, Kien F L, Morinaga M & Hakuta K, Phys Rev Lett, 109 (2012) 063602.
  • Shafi K M, Nayak K P, Miyanaga A & Hakuta K, Appl Phys B Lasers Opt, 126 (2020) 58.
  • Stiebeiner A, Rehband O, Garcia-Fernandez R & Rauschenbeutel A, Opt Express, 17 (2009) 21704.
  • S Murmu, Kumar A & Jha R, Adv Quantum Technol, 5 (2022) 2100160.
  • Almokhtar M, Fujiwara M, Takashima H & Takeuchi S, Opt Express, 22 (2014) 20045.
  • Murmu S, Kumar A & Jha R, J Opt Soc Am B, 38 (2021) F170.
  • Schell A W, Takashima H, Tran T T, Aharonovich I & Takeuchi S, ACS Photon, 4 (2017) 761.
  • Kien F Le, Gupta S D, Balykin V I & Hakuta K, Phys Rev A - At Mol Opt Phys, 72 (2005) 032509.
  • Li S, Chen Y, Shang X, Yu Y, Yang J, Huang J, Su X, Shen J, Sun B, Ni H, Su X, Wang K & Niu Z, Nanoscale Res Lett, 15 (2020) 145.
  • Nayak K P, Zhang P & Hakuta K, Opt Lett, 39 (2014) 232.
  • Keloth J, Nayak K P & Hakuta K, Opt Lett, 42 (2017) 1003.
  • Kien F L, Nayak K P & Hakuta K, J Mod Opt, 59 (2012) 274.
  • Kien F L & Hakuta K, Phys Rev A, 80 (2009) 53826.
  • Takashima H, Fujiwara M, Schell A W & Takeuchi S, Opt Express, 24 (2016) 15050.
  • Li W, Du J & Chormaic S N, Opt Lett, 43 (2018) 1674.
  • Sahu S, Nayak K P & Jha R, J Opt, 24 (2022) 115401.
  • Romagnoli P, Maeda M, J Ward M, Truong V G & Chormaic S N, Appl Phys B Lasers Opt, 126 (2020) 111.
  • Nayak K P, Kien F L, Kawai Y, Hakuta K, Nakajima K, Miyazaki H T & Sugimoto Y, Opt Express, 19 (2011) 14040.
  • Li W, Du J, V Truong G & Chormaic S N, Appl Phys Lett, 110 (2017) 253102.
  • Schell A W, Takashima H, Kamioka S, Oe Y, Fujiwara M, Benson O & Takeuchi S, Sci Rep, 5 (2015) 9619.
  • Nayak K P, Wang J & Keloth J, Phys Rev Lett, 123 (2019) 213602.
  • Nayak K P, Keloth J & Hakuta K, J Vis Exp, 2017 (2017) e55136.
  • Sadgrove M, Yalla R, Nayak K P & Hakuta K, Opt Lett, 38 (2013) 2542.
  • Hill K O, Malo B, Bilodeau F, Johnson D C & Albert J, Appl Phys Lett, 62 (1993) 1035.
  • Albert J, Shao L Y & Caucheteur C, Laser Photon Rev, 7 (2013) 83.
  • Keloth J, Sadgrove M, Yalla R & Hakuta K, Opt Lett, 40 (2015) 4122.
  • Zhu M, Wang Y-T, Sun Y-Z, Zhang L & Ding W, Opt Lett, 43 (2018) 559.
  • Yalla R & Hakuta K, Appl Phys B Lasers Opt, 126 (2020) 187.
  • Dai H, Zhong Y, Wu X, Hu R, Wang L, Zhang Y, Fan G, Hu X, Li J & Yang Z, J Electroanal Chem, 810 (2018) 95.
  • Chen C, Caucheteur C, Mégret P & Albert J, Meas Sci Technol, 18 (2007) 3117.
  • Srinivasan K, Borselli M, Painter O, Stintz A & Krishna S, Opt Express, 14 (2006) 1094.
  • Wang X, Zhang P, Li G & Zhang T, Opt Express, 29 (2021) 11158.
  • Daly M, Truong V G, Phelan C F, Deasy K & Chormaic S N, New J Phys, 16 (2014) 53052.
  • Purcell E M, Phys Rev, 69 (1946) 681.
  • Rao V S C M & Hughes S, Phys Rev B - Condens Matter Mater Phys, 75 (2007) 205437.
  • Novotny L & Hecht B, (Cambridge university press, 2012).
  • Shafi K M, Yalla R & Nayak K P, Phys Rev Appl, 19 (2023) 34008.
  • Sugawara M, Y Xuan, Mitsumori Y, Edamatsu K & Sadgrove M, Phys Rev Res, 4 (2022) 43146.
  • Gaio M, Moffa M, Castro-Lopez M, Pisignano D, Camposeo A & Sapienza R, ACS Nano, 10 (2016) 6125.
  • Nieddu T, Gokhroo V & Chormaic S N, J Opt, 18 (2016) 53001.
  • Das M, Shirasaki A, Nayak K P, Morinaga M, Kien F L & Hakuta K, Opt Express, 18 (2010) 17154.
  • Nayak K P, Wang J & Keloth J, Phys Rev Lett, 123 (2019) 213602.
  • Liebermeister L, Petersen F, Münchow A V, Burchardt D, Hermelbracht J, Tashima T, Schell A W, Benson O, Meinhardt T, Krueger A, Stiebeiner A, Rauschenbeutel A, Weinfurter H & Weber M, Appl Phys Lett, 104 (2014) 031101.
  • Yalla R, Kojima Y, Fukumoto Y, Suzuki H, Ariyada O, Shafi K M, Nayak K P & Hakuta K, Appl Phys Lett, 120 (2022) 241102.
  • Kien F L & Hakuta K, Phys Rev A - At Mol Opt Phys, 79 (2009) 053826.
  • Yalla R R, Shafi K M & Hakuta K, Phys Soc Jpn, 73 (2018) 206.
  • Yalla R, Shafi K M, Nayak K P & Hakuta K, Appl Phys Lett, 120 (2022) 071108.

Abstract Views: 97

PDF Views: 64




  • Efficient Coupling of Single Photons into Tilted Nanofiber Bragg Gratings

Abstract Views: 97  |  PDF Views: 64

Authors

Subrat Sahu
Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, IIT Bhubaneswar, Khurda 752 050, Odisha, India
Rajan Jha
Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, IIT Bhubaneswar, Khurda 752 050, Odisha, India

Abstract


We report a new gateway towards the light-matter interaction of spontaneous emission from a quantum emitter (QE) in optical nanofiber (ONF) based on nanocavities tilted by some angle with respect to the plane of the fiber cross-section. This structure is designed by three-dimensional finite-difference time-domain simulations to enhance the spontaneous emission decay rate from a QE and maximize the coupling efficiency into the fiber-guided modes. Here, we systematically analyzed the polarization-dependent spontaneous emission characteristics of QE and cavity characteristics of the proposed structure. We show that the coupling efficiency from single emitters can reach as high as ~ 90% with the Purcell factor can be as high as ∼ 65. The results show a 10-fold enhancement factor from a QE in the cavity center compared with the cavity surface. The tilted angle can be optimized to get more transmission and coupling efficiency. This tilted structure has a high Q-factor of ~ 1000 and a low mode volume of ~ 0.56 μm3, with a maximum degree of polarization of the single photons has been calculated as high as 96%. For the quantum information and quantum photonics application, this system attracts researchers to a new direction in the quantum world.

Keywords


Tilted Fiber Bragg Grating, Single Photon, cQED.

References