Open Access Open Access  Restricted Access Subscription Access

Efficient Coupling of Single Photons into Tilted Nanofiber Bragg Gratings


Affiliations
1 Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, IIT Bhubaneswar, Khurda 752 050, Odisha, India
 

We report a new gateway towards the light-matter interaction of spontaneous emission from a quantum emitter (QE) in optical nanofiber (ONF) based on nanocavities tilted by some angle with respect to the plane of the fiber cross-section. This structure is designed by three-dimensional finite-difference time-domain simulations to enhance the spontaneous emission decay rate from a QE and maximize the coupling efficiency into the fiber-guided modes. Here, we systematically analyzed the polarization-dependent spontaneous emission characteristics of QE and cavity characteristics of the proposed structure. We show that the coupling efficiency from single emitters can reach as high as ~ 90% with the Purcell factor can be as high as ∼ 65. The results show a 10-fold enhancement factor from a QE in the cavity center compared with the cavity surface. The tilted angle can be optimized to get more transmission and coupling efficiency. This tilted structure has a high Q-factor of ~ 1000 and a low mode volume of ~ 0.56 μm3, with a maximum degree of polarization of the single photons has been calculated as high as 96%. For the quantum information and quantum photonics application, this system attracts researchers to a new direction in the quantum world.

Keywords

Tilted Fiber Bragg Grating, Single Photon, cQED.
User
Notifications
Font Size


  • Efficient Coupling of Single Photons into Tilted Nanofiber Bragg Gratings

Abstract Views: 205  |  PDF Views: 119

Authors

Subrat Sahu
Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, IIT Bhubaneswar, Khurda 752 050, Odisha, India
Rajan Jha
Nanophotonics and Plasmonics Laboratory, School of Basic Sciences, IIT Bhubaneswar, Khurda 752 050, Odisha, India

Abstract


We report a new gateway towards the light-matter interaction of spontaneous emission from a quantum emitter (QE) in optical nanofiber (ONF) based on nanocavities tilted by some angle with respect to the plane of the fiber cross-section. This structure is designed by three-dimensional finite-difference time-domain simulations to enhance the spontaneous emission decay rate from a QE and maximize the coupling efficiency into the fiber-guided modes. Here, we systematically analyzed the polarization-dependent spontaneous emission characteristics of QE and cavity characteristics of the proposed structure. We show that the coupling efficiency from single emitters can reach as high as ~ 90% with the Purcell factor can be as high as ∼ 65. The results show a 10-fold enhancement factor from a QE in the cavity center compared with the cavity surface. The tilted angle can be optimized to get more transmission and coupling efficiency. This tilted structure has a high Q-factor of ~ 1000 and a low mode volume of ~ 0.56 μm3, with a maximum degree of polarization of the single photons has been calculated as high as 96%. For the quantum information and quantum photonics application, this system attracts researchers to a new direction in the quantum world.

Keywords


Tilted Fiber Bragg Grating, Single Photon, cQED.

References