Open Access Open Access  Restricted Access Subscription Access

When Plasmonic Colloids Meet Optical Vortices - A Brief Review


Affiliations
1 Department of Physics, Indian Institute of Science Education and Research, Pune – 411 008, India
 

Structured light has emerged as an important tool to interrogate and manipulate matter at micron and sub-micron scale. One form of structured light is an optical vortex beam. The helical wave front of these vortices carry orbital angular momentum which can be transferred to a Brownian colloid. When the colloid is made of metallic nanostructures, such as silver and gold, resonant optical effects play a vital role, and the interaction leads to complex dynamics and assembly. This brief review aims to discuss some recent work on trapping plasmonic colloids with optical vortices and their lattices. The role of optical scattering and absorption has important implications on the underlying forces and torques, which is specifically enunciated. The effect of spin and orbital angular momentum in an optical vortex can lead to spin-orbit coupling dynamics, and these effects are highlighted with examples from the literature. In addition to assembly and dynamics, enhanced Brownian motion of plasmonic colloids under the influence of a vortex-lattice is discussed. The pedagogical aspects to understand the interaction between optical vortex and plasmonic colloids is emphasized.

Keywords

Optical Vortices, Plasmonic Colloids, Optical Scattering, Absorption.
User
Notifications
Font Size

  • Lugt H J, Vortex Flow in Nature and Technology (Wiley, 1983).
  • Schommers W, Basic Physics of Nanoscience: Traditional Approaches and New Aspects at the Ultimate Level, (Elsevier, 2018).
  • Wolf E L, Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience (John Wiley & Sons, 2008).
  • Natelson D, Nanostructures and Nanotechnology, 1st Edn (Cambridge University Press, 2015).
  • Faraday M, Philos Trans R Soc, 147 (1857) 145.
  • Tyndall J, Faraday as a Discoverer, Longmans, Green, and Company, (1894).
  • Kelly K L, Coronado E, Zhao L L & Schatz G C, J Phys Chem B, 107 (2003) 668.
  • Kreibig U & Vollmer M, Optical Properties of Metal Clusters (Springer, 1995).
  • Bohren C F & Huffman D R, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, 2008).
  • Lakhtakia A, Nanometer Structures: Theory, Modeling, and Simulation (SPIE Press, 2004).
  • Henry A I, Bingham J M, Ringe E, Marks L D, Schatz G C & Duyne R P V, J Phys Chem, 115 (2011) 9291.
  • Maier S A, Plasmonics: Fundamentals and Applications, Springer Science & Business Media, (2007).
  • Lal S, Link S & Halas N J, Nature Photon, 1 (2007) 641.
  • Barnes W L, Dereux A & Ebbesen T W, Nature, 424 (2003) 824.
  • Polo J, Mackay T & Lakhtakia A, Electromagnetic Surface Waves: A Modern Perspective (Newnes, 2013).
  • Polo J & Lakhtakia A, Laser Photon Rev, 5 (2011) 234.
  • Aberasturi J de, Serrano-Montes A B & Liz-Marza´n L M, Adv Opt Mater, 3 (2015) 602.
  • Achanta V G, Progress Quant Electron, 39 (2015) 1.
  • Achanta V G, Rev Phys, 5 (2020) 100041.
  • Patra A, Ravishankar A P, Nagarajan A, Maurya S & Achanta V G, J Appl Phys, 119 (2016). 113107
  • G. Baffou, Thermoplasmonics: Heating Metal Nanoparticles Using Light, (Cambridge University Press, Cambridge, 2017).
  • Baffou G, Cichos F & Quidant R, Nat Mater, 19 (2020) 946.
  • Lal S, Clare S E & Halas N J, Acc Chem Res, 41 (2008). 1842
  • Ashkin A, Phys Rev Lett, 24 (1970) 156.
  • Ashkin A, IEEE J Select Top Quant Electron, 6 (2000) 841
  • Ashkin A & Dziedzic J M, Appl Phys Lett, 19 (1971) 283.
  • Ashkin A, Dziedzic J M, Bjorkholm J E & Chu S, Opt Lett, 11 (1986) 288.
  • Jones P H, Marago O M & Volpe G, Optical Tweezers: Principles and Applications (Cambridge University Press, 2015).
  • Chu S, Bjorkholm J E, Ashkin A & Cable A, Phys Rev Lett, 57(1986) 314.
  • Chu S, Rev Mod Phys, 70 (1998) 685.
  • Phillips W D, Rev Mod Phys, 70 (1998) 721.
  • Ashkin A, Dziedzic J M & Yamane T, Nature, 330 (1987) 769.
  • Ashkin A & Dziedzic J M, Science, 235 (1987). 1517
  • Ashkin A & Dziedzic J M, Proc Nat Acad Sci, 86 (1989) 7914.
  • Ashkin A, Biophys J, 61 (1992) 569.
  • Ashkin A, Optical Trapping and Manipulation Of Neutral Particles Using Lasers: A Reprint Volume With Commentaries (World Scientific, 2006).
  • Svoboda K & Block S M, Opt Lett, 19 (1994) 930.
  • Dienerowitz M, Mazilu M & Dholakia K, J Nat Prod, 2 (2008) 021875.
  • Lehmuskero A, Johansson P, Rubinsztein-Dunlop H, Tong L & Ka¨ll M, ACS Nano, 9 (2015) 3453.
  • Dholakia K & Zema´nek P, Rev Mod Phys, 82, (2010) 1767.
  • Marago`O M, Jones P H, Gucciardi P G, Volpe G & Ferrari A C, Nature Nanotech, 8 (2013) 807.
  • Grier D G, Curr Opin Colloid Interface Sci, 2 (1997) 264.
  • Grier D G, Nature, 424 (2003) 810.
  • Gordon R, ACS Photon, 9 (2022) 1127.
  • Xin H, Li Y, Liu Y-C, Zhang Y, Xiao Y-F & Li B, Adv Mater, 32 (2020) 2001994.
  • Tiwari S, Khandelwal U, Sharma V & Kumar G V P, J Phys Chem Lett, 12 (2021) 11910 .
  • Sharma V, Tiwari S, Paul D, Sahu R, Chikkadi V & Kumar G V P, Soft Matter, 17 (2021) 10903.
  • Paul D, Chand R & Kumar G V P, ACS Photon, 9 (2022) 3440.
  • Patra P P, Chikkaraddy R, Tripathi R P N, Dasgupta A & Kumar G V P, Nat Commun, 5 (2014) 4357.
  • Ghosh S & Ghosh A, Nat Commun, 10 (2019) 4191.
  • Ghosh S & Ghosh A, Langmuir, 36 (2020) 5691.
  • Sharma V, Paul D, Chaubey S K, Tiwari S & Kumar G V P, J Phys: Condens Matter, 32 (2020) 324002.
  • Nalupurackal G, Gunaseelan M, Roy S, Lokesh M, Kumar S, Vaippully R, Singh R & Roy B, Soft Matter, 18 (2022) 6825.
  • Kumar S, Gunaseelan M, Vaippully R, Kumar A, Ajith M, Vaidya G, Dutta S & Roy B, Biomed Opt Exp, 11 (2020) 3555.
  • Kumar S, Kumar A, Gunaseelan M, Vaippully R, Chakraborty D, Senthilselvan J & Roy B, Front Phys, 8 (2020).
  • Ghosh S, Ranjan A D, Das S, Sen R, Roy B, Roy S & Banerjee A, Nano Lett, 21 (2021) 10.
  • Kotsifaki D G & Chormaic S N, Nanophotonics, 11 (2022) 2199.
  • Kotsifaki D G & Chormaic S N, Nanophotonics, 8 (2019) 1227.
  • Lin K, Wang M, Peng X, Lissek E N, Mao Z, Scarabelli L, Adkins E, Coskun S, Unalan H E, Korgel A, Liz-Marza´n L M, Florin E -L & Zheng Y, Nature Photon, 12 (2018) 195.
  • Ishihara H, Adv Phys, 6 (2021) 1885991.
  • Devi A & De A K, Phys Rev Res, 2 (2020) 043378.
  • De K, Roy D, Dutta A & Goswami D, Appl Opt, 48, (2009) 33.
  • Zema´nek P, Volpe G, Jona´ˇs A & Brzobohaty O, Adv Opt Photon, 11 (2019) 577.
  • Volpe G, Marago O M `, Rubinzstein-Dunlop H, Pesce G, Stilgoe A B, Volpe G, Tkachenko G, Truong V G, Chormaic S N, Kalantarifard F, Elahi P, Ka¨ll M, Callegari A, Marqu´es M I, Neves A A R, Moreira W L, Fontes A, Cesar C L, Saija R, Saidi A, Beck P, Eismann J S, Banzer P, Fernandes T F D, Pedaci F, Bowen W P, Vaippully R, Lokesh M, Roy B, Thalhammer G, Ritsch-Marte M, Garc´ıa L P, Arzola A V, Castillo I P, Argun A, Muenker T M, Vos B E, Betz T, Cristiani I, Minzioni P, Reece P J, Wang F, McGloin D, Ndukaife J C, Quidant R, Roberts R P, Laplane C, Volz T, Gordon R, Hanstorp D, Marmolejo J T, Bruce G D, Dholakia K, Li T, Brzobohaty O, Simpson S H, Zema´nek P, Ritort F, Roichman Y, Bobkova V, Wittkowski R, Denz C, Kumar G V P, Foti A, Donato M G, Gucciardi P G, Gardini L, Bianchi G, Kashchuk A, Capitanio M, Paterson L, Jones P H, Berg-Sørensen K, Barooji Y F, Oddershede L B, Pouladian P, Preece D, Adiels C B, Luca A C De, Magazzu`A, Ciriza D B, Iat`ı M A & Swartzlander G A, Roadmap for Optical Tweezers, arXi:2206.13789, Cond Mater Phys, (2022).
  • Coullet P, Gil L & Rocca F, Opt Commun,73, (1989) 403.
  • Allen L, Beijersbergen M W, Spreeuw R J C & Woerdman J P, Phys Rev A, 45 (1992) 8185.
  • Padgett M J, Opt Express, 25 (2017) 11265.
  • Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M & Yuan X, Light Sci Appl, 8 (2019) 90.
  • Kumar A, Vaity P, Banerji J & Singh R P, Phys Lett A, 375 (2011) 3634.
  • Viswanathan N K & Inavalli V V G, Opt Lett, 34 (2009) 1189.
  • Kumar A, Prabhakar S, Vaity P & Singh R P, Opt Lett, 36 (2011) 1161.
  • Kapoor M, Kumar P, Senthilkumaran P & Joseph J, Opt Commun, 365 (2016) 99.
  • Xavier J, Vyas S, Senthilkumaran P, Denz C & Joseph J, Opt Lett, 36 (2011) 3512.
  • Bekshaev A, Soskin M S & Vasnetsov M, Paraxial Light Beams with Angular Momentum, Nova Science Publishers, (2008).
  • Khare K, Lochab P & Senthilkumaran P, Orbital Angular Momentum States of Light: Propagation through Atmospheric Turbulence (IOP Publishing, 2020).
  • Remesh G, Gucchait A B S, Banerjee A, Ghosh N & Gupta S D, J Opt, 24 (2022) 105602.
  • Singh A K, Saha S, Gupta S D & Ghosh N, Phys Rev A, 97 (2018) 043823.
  • Roy S, Ghosh N, Banerjee A & Gupta S D, Phys Rev A, 105 (2022) 063514.
  • Kumar V & Viswanathan N K, J Opt Soc Am B, 31 (2014) 40.
  • Babiker K, Power W L & Allen L, Phys Rev Lett, 73 (1994) 1239.
  • He H, Friese M E J, Heckenberg N R & RubinszteinDunlop H, Phys Rev Lett, 75 (1995) 826.
  • Gahagan K T & Swartzlander G A, Opt Lett, 21 (1996) 827.
  • Simpson L B, Allen L & Padgett M J, J Mod Opt, 43 (1996) 2485.
  • Simpson N B, Dholakia K, Allen L & Padgett M J, Opt Lett, 22 (1997) 52.
  • Gahagan K T & Swartzlander G A, J Opt Soc Am B, 15 (1998) 524.
  • Gahagan K T & Swartzlander G A, J Opt Soc Am B, 16 (1999) 533.
  • Friese M E J, Nieminen T A, Heckenberg N R & H Rubinsztein-Dunlop, Nature, 394 (1998) 348.
  • O’Neil A T & Padgett M J, Opt Commun, 185 (2000) 139.
  • Padgett M & Bowman R, Nature Photon, 5 (2011) 343.
  • Yao A M & Padgett M J, Adv Opt Photon, 3 (2011) 161.
  • Rubinsztein-Dunlop H, Forbes A, Berry M V, Dennis M R, Andrews D L, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser N M, Bigelow N P, Rosales-Guzma´n C, Belmonte A, Torres J P, Neely T W, Baker M, Gordon R, Stilgoe A B, Romero J, White A G, Fickler R, Willner A E, Xie G, McMorran B & Weiner A M, J Opt, 19 (2016) 013001.
  • Stuhlmu¨ller N C X, Fischer T M & Heras D de las, Phys Rev E, 106 (2022) 034601.
  • Tsuji T, Nakatsuka R, Nakajima K, Doi K & Kawano S, Nanoscale, 12 (2020) 6673.
  • Nakajima K, Tsujimura T, Doi K & Kawano S, ACS Omega, 7 (2022) 2638.
  • Sharma K, Kumar V, Vasista A B, Paul D, Chaubey S K & Kumar G V P, ACS Photon, 6 (2019) 148.
  • Paul D, Sharma K & Kumar G V P, Laser Photon Rev, (2022) 2200049.
  • Shi H & Bhattacharya M, J Phys B: At Mol Opt Phys, 49 (2016) 153001.
  • Otte & Denz C, Appl Phys Rev, 7 (2020) 041308.
  • Yang Y, Ren Y, Chen M, Arita Y & Rosales-Guzma´n C, Adv Photon, 3 (2021) 034001.
  • Spesyvtseva S E S & Dholakia K, ACS Photon, 3 (2016) 719.
  • Nieto-Vesperinas M, Phys Rev A, 92 (2015) 043843.
  • Albaladejo S, Marqu´es M I, Laroche M & Sa´enz J J, Phys Rev Lett, 102 (2009) 113602.
  • S´ıpova´-Jungova´H, Andr´en D, Jones S & Ka¨ll M, Chem Rev, 120 (2020) 269.
  • Bruce D, Rodr´ıguez-Sevilla P & Dholakia K, Adv Phys, 6 (2021) 1838322.
  • Lehmuskero A, Li Y, Johansson P & Ka¨ll M, Opt Express, 22 (2014) 4349.
  • Friese M E J, Enger J, Rubinsztein-Dunlop H & Heckenberg N R, Phys Rev A, 54 (1996) 1593.
  • Hajizadeh L S, Andr´en D, Johansson P, Rubinsztei-Dunlop H & Ka¨ll M, Optica, 4 (2017) 746.
  • Liaw J-W, Chen Y-S & Kuo M-K, Opt Express, 22 (2014) 26005.
  • O’Neil T, MacVicar I, Allen L & Padgett M J, Phys Rev Lett, 88 (2002) 053601.
  • Dogariu S S & Sa´enz J, Nature Photon, 7 (2013) 24.
  • Padgett M, Courtial J & Allen L, Phys Today, 57 (2004) 35.
  • Allen L, Barnett S M & Padgett M J, Optical Angular Momentum (CRC Press, 2003).
  • Padgett M & Allen L, Contemp Phys, 41 (2000) 275.
  • Senthilkumaran P, Singularities in Physics and Engineering: Properties, Methods, and Applications (IOP Publishing, 2018).
  • Andrews D L & Babiker M, The Angular Momentum of Light, 1st Edn (Cambridge University Press, Cambridge, UK, 2012).
  • Andrews D L, Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Academic Press, 2011).
  • Saleh E A & Teich M C, Fundamentals of Photonics, 2nd Edn (Wiley India Pvt Ltd, 2012).
  • Gbur J, Singular Optics, 1st Edn, (CRC Press, Boca Raton, 2016).
  • Gbur G J, Mathematical Methods for Optical Physics and Engineering (Cambridge University Press, 2011).
  • Tamura M, Omatsu T, Tokonami S & Iida T, Nano Lett, 19 (2019) 4873.
  • Bliokh K Y, Phys Rev Lett, 97 (2006) 043901.
  • Bliokh K Y, Niv A, Kleiner V & Hasman E, Nature Photon, 2 (2008) 748.
  • Bliokh K Y, Ostrovskaya E A, Alonso M A, Rodr´ıguezHerrera O G, Lara D & Dainty C, Opt Express, 19 (2011) 26132.
  • Bliokh K Y, Rodr´ıguez-Fortun˜o F J, Nori F & Zayats A V, Nature Photon, 9 (2015) 796.
  • Eismann J S, Nicholls L H, Roth D J, Alonso M A, Banzer P, Rodr´ıguez-Fortun˜o F J, Zayats A V, Nori F, & Bliokh K Y, Nat Photon, 15 (2021) 156.
  • Bliokh K Y, Smirnova D & Nori F, Science, 348 (2015) 1448.
  • Parker J, Peterson C W, C Peterson W, Yifat Y, Rice S A, Rice S A, Yan Z, Gray S K, Scherer N F & Scherer N F, Optica, 7 (2020) 1341.
  • Yan Z & Scherer N F, J Phys Chem Lett, 4 (2013) 2937.
  • Dienerowitz M, Mazilu M, Reece P J, Krauss T F & Dholakia K, Opt Express, 16, (2008) 4991.
  • Albaladejo S, Marqu´es M I, Scheffold F & Sa´enz J J, Nano Lett, 9 (2009) 3527.
  • Bunde J C, Ka¨rger J & Vogl G, Diffusive Spreading in Nature, Technology and Society (Springer, 2017).
  • Bradshaw S & Andrews D L, Eur J Phys, 38 (2017) 034008.
  • Sukhov S & Dogariu A, Rep Prog Phys, 80 (2017) 112001.
  • Roichman Y, Sun B, A Stolarski & Grier D G, Phys Rev Lett, 101 (2008) 128301.
  • Wu P, Huang R, Tischer C, Jonas A & Florin E-L, Phys Rev Lett, 103 (2009) 108101.
  • Zhu L, Tang M, Li H, Tai Y & X Li, Nanophotonics, 10 (2021) 2487.
  • Albaladejo S, Marqu´es M I & Sa´enz J J, Opt Express, 19 (2011) 11471.
  • Zapata I, Delgado-Buscalioni R & Sa´enz J J, Phys Rev E, 93 (2016) 062130.
  • Dobnikar J, Snezhko A & Yethiraj A, Soft Matter, 9 (2013) 3693.
  • Delgado-Buscalioni R, Mel´endez M, Luis-Hita J, Marqu´es M I & Sa´enz J J, Phys Rev E, 98 (2018) 062614.
  • Mel´endez L, Alca´zar-Cano N, Pel´aez R P, Sa´enz J J & Delgado-Buscalioni R, Phys Rev E, 99 (2019) 022603.
  • Tao S H, Yuan X-C, Lin J, Peng X & Niu H B, Opt Express, 13 (2005) 7726.
  • David B G & Bartal G, Phys Rev B, 93 (2016) 121302.
  • Rodrigo A & Alieva T, Sci Rep, 6 (2016) 33729.
  • Rodrigo A, Angulo M & Alieva T, Opt Lett, 43 (2018) 4244.
  • Rodrigo J A, Angulo M & Alieva T, Photon Res, 9 (2021) 1.
  • Rodrigo J A, Angulo M & Alieva T, Light Sci Appl, 9 (2020) 181.
  • Grigorchuk K I, J Opt Soc Am B, 35 (2018) 2851.
  • Ferrer-Garcia F & Lopez-Mago D, J Opt, 21 (2019) 125403.
  • Tao Y, Yokoyama T & Ishihara H, Rotation of optically bound particle assembly due to scattering induced spin-orbit coupling of light, (2021), arXiv:2104.11387 [physics].

Abstract Views: 163

PDF Views: 96




  • When Plasmonic Colloids Meet Optical Vortices - A Brief Review

Abstract Views: 163  |  PDF Views: 96

Authors

G V Pavan Kumar
Department of Physics, Indian Institute of Science Education and Research, Pune – 411 008, India

Abstract


Structured light has emerged as an important tool to interrogate and manipulate matter at micron and sub-micron scale. One form of structured light is an optical vortex beam. The helical wave front of these vortices carry orbital angular momentum which can be transferred to a Brownian colloid. When the colloid is made of metallic nanostructures, such as silver and gold, resonant optical effects play a vital role, and the interaction leads to complex dynamics and assembly. This brief review aims to discuss some recent work on trapping plasmonic colloids with optical vortices and their lattices. The role of optical scattering and absorption has important implications on the underlying forces and torques, which is specifically enunciated. The effect of spin and orbital angular momentum in an optical vortex can lead to spin-orbit coupling dynamics, and these effects are highlighted with examples from the literature. In addition to assembly and dynamics, enhanced Brownian motion of plasmonic colloids under the influence of a vortex-lattice is discussed. The pedagogical aspects to understand the interaction between optical vortex and plasmonic colloids is emphasized.

Keywords


Optical Vortices, Plasmonic Colloids, Optical Scattering, Absorption.

References