Open Access Open Access  Restricted Access Subscription Access

Tutorial: Cavity Quantum Optomechanics


Affiliations
1 Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
 

Exploring quantum physics in mancroscopic systems and manupulating these systems for various technological applications has been a topic of intense research in the last one decade or so. In this regard, the field of cavity quantum optomechanics turns out to be one of the most rapidly emerging area of research. It has opened many doors to study various open ended fundamental questions in quantum physics, apart from numerous possible applications. A typical cavity optomechanical system consists of two mirrors, one fixed while the other one is movable. These systems may be of micrometer or nano-meter in dimensions. The electromagnetic radiation incident on the system may get coupled to the mechanical motion of the movable mirror. This opto-mechanical coupling is the root of all phenomena such as quantum entanglement, state-transfer, squeezing and so on. In this short tutorial, basic concepts of cavity quantum optomechanics are discussed. We hope that this tutorial would motivate readers, both theorists and experimentalists, to take up advanced studies in this immensely fruitful area of research.

Keywords

Optomechanics, Cavity System, Quantum Rntanglement, Squeezing.
User
Notifications
Font Size

  • Aspelmeyer M, Kippenberg T J & Marquardt F, Rev Mod Phys, 86 (2014) 1391.
  • Aspelmeyer M, Kippenberg T J & Marquardt F, Cavity Optomechanics: Nano and Micromechanical Resonators Interacting with Light, Springer Berlin Heidelberg, 2014.
  • Ekinci K L & Roukes M L, Rev Sci Instrum, 76 (2005) 061101.
  • Einstein A, Physik.Z, 10 (1909) 817.
  • Braginskii V B & Manukin A B, Sov Phys JETP, 25 (1967) 653.
  • Barzanjeh S, Xuereb A, Groblacher S, Paternostro M, Regal C A & Weig E M, Nat Phys, 18 (2021) 15.
  • Bowen W P & Milburn G J, Quantum Optomechanics, Taylor & Francis, 2015.
  • Sarma A K, Chakraborty S & Kalita S, AVS Quantum Sci, 3 (2021) 015901.
  • Aspelmeyer M, Meystre P & Schwab K, Phys Today, 65 (2012)29,
  • Midolo L, Schliesser A & Fiore A, Nat Nanotechnol, 13 (2018) 11.
  • Ashkin A, Phys Rev Lett, 40 (1978) 729.
  • Gardiner C W & Collett M J, Phys Rev A, 31 (1985) 3761.
  • Dorsel A, McCullen J D, Meystre P, Vignes E & Walther H, Phys Rev Lett, 51 (1983) 1550.
  • DeJesus E X & Kaufman C, Phys Rev A, 35 (1987) 5288.
  • Roque T F, Marquardt F & Yevtushenko O M, New J Phys, 22 (2020) 013049.
  • Wiseman H M & Milburn G J, Phys Rev Lett, 70 (1993) 548.
  • Wilson-Rae I, Nooshi N, Zwerger W & Kippenberg T J, Phys Rev Lett, 99 (2007) 093901.
  • Schliesser A, Rivi`ere R, Anetsberger G, Arcizet O & Kippenberg T J, Nat Phys, 4 (2008) 415.
  • Mari A & Eisert J, Phys Rev Lett, 103 (2009) 213603.
  • Bai C-H, Wang D-Y, Zhang S, Liu S & Wang H-F, Phys Rev A, 101 (2020) 053836.
  • Abbott B P, et al., Rep Prog Phys, 72 (2009) 076901.
  • Acernese F, et al., Phys Rev Lett, 123 (2019) 231108.
  • Vitali D, Gigan S, Ferreira A, Boehm H, Tombesi P, Guerreiro A, Vedral V, Zeilinger A & Aspelmeyer M, Phys Rev Lett, 98 (2007 ) 030405.
  • Sarna AK & Kalitas, arxiv:2211.02596(2022).
  • Wang Y-D & Clerk A A, New J Phys, 14 (2012) 105010.
  • Neto G D de M, Andrade F M, Montenegro V & Bose S, Phys Rev A, 93 (2016) 062339.
  • Mirhosseini M, Sipahigil A, Kalaee M & Painter O, Nature, 588 (2020) 599.
  • Huang S, Phys Rev A, 92 (2015) 043845.
  • Andrews R W, Peterson R W, Purdy T P, Cicak K, Simmonds R W, Regal C A & Lehnert K W, Nat Phys, 10 (2014) 321.
  • Nielsen M A & Chuang I L, Quantum Computation and Quantum Information: 10th Edn, Cambridge University Press, 2011.
  • Wilde M M, Quantum Information Theory, Cambridge University Press, 2013.
  • Akram U, Munro W, Nemoto K & Milburn G J, Phys Rev A, 86 (2012) 042306.
  • Wang M, X Lu -Y, Wang Y-D, You J Q & Wu Y, Phys Rev A, 94 (2016) 053807.
  • Barzanjeh S, Vitali D, Tombesi P & Milburn G J, Phys Rev A, 84 (2011) 042342.
  • Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H & Pirandola S, Phys Rev Lett, 114 (2015) 080503.
  • Li J & Gr¨oblacher S, New J Phys, 22 (2020) 063041.
  • Kalita S, Shah S & Sarma A K, Phys Rev A, 106 (2022) 043501.
  • Strogatz S H, Sync: The Emerging Science of Spontaneous Order, Penguin Books Limited, 2004.
  • Galve F, Giorgi G L & Zambrini R, Quantum Correlations and Synchronization Measures, Cham: Springer International Publishing, (2017) 393.
  • Ameri V, Eghbali-Arani M, Mari A, Farace A, Kheirandish F, Giovannetti V & Fazio R, Phys Rev A, 91 (2015) 012301.
  • Koppenh¨ofer M & Roulet A, Phys Rev A, 99 (2019) 043804.
  • Mari A, Farace A, Didier N, Giovannetti V & Fazio R, Phys Rev Lett, 111 (2013) 103605.
  • Jaseem N, Hajduˇsek M, Solanki P, Kwek L-C, Fazio R & Vinjanampathy S, Phys Rev Res, 2 (2020) 043287.
  • Zhang M, Wiederhecker G S, Manipatruni S, Barnard A, McEuen P & Lipson M, Phys Rev Lett, 109 (2012) 233906.
  • Liao C-G, Chen R-X, Xie H, He M-Y & Lin X-M, Phys Rev A, 99 (2019) 033818.
  • Manzano G, Galve F, Giorgi G, Garc´ıa E H & Zambrini R, Sci Rep, 3 (2013) 1439.
  • Li T, Bao T-Y, Zhang Y-L, Zou C-L, Zou X-B & Guo G-C, Opt Express, 24 (2016) 12336.
  • Li W, Zhang F, Li C & Song H, Commun Nonlinear Sci Numer Simulat, 42 (2017) 121.
  • Li W, Li C & Song H, Phys Rev E, 95 (2017) 022204.
  • Sina K, Photonics, 4 (2017) 48.
  • Khorasani S, Sci Rep, 8 (2018) 16676.
  • Nunnenkamp A, Børkje K, Harris J G E & Girvin S M, Phys Rev A, 82 (2010) 021806.
  • Weiss T, Kronwald A & Marquardt F, New J Phys, 18 (2016) 013043.
  • Mikkelsen M, Fogarty T, Twamley J & Busch T, Phys Rev A, 96 (2017) 043832.
  • Meaney C P, McKenzie R H & Milburn G J, Phys Rev E, 83 (2011) 056202.
  • Liao J-Q & Nori F, PhysRev A, 88 (2013) 023853.
  • Sarma B & Sarma A K, Phys Rev A, 98 (2018) 013826.
  • Agarwal G S & Huang S, Phys Rev A, 81 (2010) 041803.
  • Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Giuseppe G D & Vitali D, Phys Rev A, 88 (2013) 013804.
  • Yan X-B, Phys Rev A, 101 (2020) 043820.
  • Heinrich G, Ludwig M, Qian J, Kubala B & Marquardt F, Phys Rev Lett, 107 (2011) 043603.
  • Zhang J, Peng B, Kim S, Monifi F, Jiang X, Li Y, Yu P, Liu L, Liu Y-X, Alu´A & Yang L, Nature, 600 (2021) 75.
  • Blais A, Grimsmo A L, Girvin S M & Wallraff A, Rev Mod Phys, 93 (2021) 025005.
  • Kumar P, Biswas T, Feliz K, Kanamoto R, Chang M-S, Jha A K & Bhattacharya M, Phys Rev Lett, 127 (2021) 113601.
  • Wang K, Gao Y-P, Jiao R & Chuan W, Front Phys, 17 (2022) 42201.

Abstract Views: 131

PDF Views: 89




  • Tutorial: Cavity Quantum Optomechanics

Abstract Views: 131  |  PDF Views: 89

Authors

Amarendra K Sarma
Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
Sampreet Kalita
Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India

Abstract


Exploring quantum physics in mancroscopic systems and manupulating these systems for various technological applications has been a topic of intense research in the last one decade or so. In this regard, the field of cavity quantum optomechanics turns out to be one of the most rapidly emerging area of research. It has opened many doors to study various open ended fundamental questions in quantum physics, apart from numerous possible applications. A typical cavity optomechanical system consists of two mirrors, one fixed while the other one is movable. These systems may be of micrometer or nano-meter in dimensions. The electromagnetic radiation incident on the system may get coupled to the mechanical motion of the movable mirror. This opto-mechanical coupling is the root of all phenomena such as quantum entanglement, state-transfer, squeezing and so on. In this short tutorial, basic concepts of cavity quantum optomechanics are discussed. We hope that this tutorial would motivate readers, both theorists and experimentalists, to take up advanced studies in this immensely fruitful area of research.

Keywords


Optomechanics, Cavity System, Quantum Rntanglement, Squeezing.

References