Open Access Open Access  Restricted Access Subscription Access

Annealing-assisted SnO2 Thin Film for Selective Hydrogen Gas Sensor


Affiliations
1 Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University Campus Meerut, Uttar Pradesh 250 004, India
2 Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Uttrakhand 247 667, India
3 Department of Physics, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248 002, India
4 Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Pilani 333 031, Rajasthan, India
5 Department of Physics, Indian Institute of Technology (B.H.U), Varanasi, Uttar Pradesh 221 005, India
6 School of Applied Sciences and technology, Chemistry Department, NIMS University, Jaipur, Rajasthan 303 121, India
 

Today, monitoring and classification of hydrogen gas by metal oxide-based sensors are widely studying to improve their selectivity and stability. In present work, hydrogen sensing properties of magnetron sputtered deposited pure SnO2 thin films have been studied. The pure SnO2 thin film was deposited on glass substrate and as-deposited film was annealed at 450 °C for 6 hrs. The annealed SnO2 thin film has crystalline tetragonal structure, granular surface morphology and non-stoichiometry elemental composition of tin and oxygen vacancies. A higher gas sensing response is obtained for annealed SnO2 thin film as compare to as-deposited SnO2 thin film. A limit of detection (LOD) ~175 ppb is estimated for annealed SnO2 thin film based sensor. This sensor exhibits fast response and recovery time of 42 s/52 s for 50 and 500 ppm hydrogen gas, respectively. The sensor is found highly selective towards H2 gas in compare to different gases such as methane, carbon monoxide and nitrogen dioxide.

Keywords

Hydrogen; Gas sensors; SnO2 thin films; Sputtering; FE-SEM; Selectivity
User
Notifications
Font Size

  • Chu J, Peng X, Wang Z & Feng P, J Mater Res Bull, 47 (2012) 4420.
  • Duy N Van, Hoa N D & Hieu N Van, J Sens Actuators B: Chem, 173 (2012) 211.
  • Boyadjiev S I, Georgieva V, Yordanov R, Raicheva Z & Szil Agyi I M, Appl Surf Sci, 387 (2016) 1230.
  • Wisitsoraat A, Tuantranont A, Patthanasettakul V, Lomas T & Chindaudom P, J Sci Technol Adv Mater, 6 (2005) 261.
  • Goudarzi S & Khojier K, AIP Conf Proc, 1920 (2018) 20049.
  • Sberveglieri G, J Sens Actuators B: Chem, 23 (1995) 103.
  • Yang W, Gan L, Li H & Zhai T, Inorg Chem Front, 3 (2016) 433.
  • Sanger A, Kumar A, Kumar A & Chandra R, Sens Actuators B: Chem, 234 (2016) 8.
  • Zhang B W, Fu W Y, Li H Y, Fu X L, Wang Y, Bala H, Wang X D, Sun G, Cao J L & Zhang Z Y, J Appl Surf Sci, 363 (2016) 560.
  • Wang Y L, Liu C, Wang L, Liu J, Zhang B, Gao Y, Sun P, Sun Y F, Zhang T & Lu G Y, J Sens Actuators B: Chem, 240 (2017) 1321.
  • Zhao Y P, Liu Y X, Ma Y X, Li Y H, Zhang J H, Ren X P, Li C, Zhao J C, Zhu J & H Y Zhao, J ACS Appl Nano Mater, 3 (2020) 7720.
  • Cheng L, Ma S Y, Wang T T, Li X B, Luo J, Li W Q, Mao Y Z & Gz D J, J Mater Lett, 131 (2014) 23.
  • Wang B, Sun L & Wang Y D, J Mater Lett, 218 (2018) 290.
  • Wang S J, Yu W W, Cheng C W, Zhang T N, Ge M Y, Sun Y & Dai N, J Mater Res Bull, 89 (2017) 267.
  • Umar A, Ammar H Y, Kumar R, Ibrahim A A & Al-Assiri M S, J Sens Actuators B: Chem, 304 (2020) 11.
  • Jiang X H, Ma S Y, Sun A M, Zhang Z M, Jin W X, Wang T T, Li W Q, Xu X L, Luo J, Cheng L, Mao Y Z & Zhang M, J Appl Surf Sci, 355 (2015) 1192.
  • Tan W H, Yu Q X, Ruan X F & Huang X T, J Sens. Actuators B: Chem, 212 (2015) 47.
  • Xu M H, Cai F S, Yin J, Yuan Z H & Bie L J, J Sens Actuators B: Chem, 145 (2010) 875.
  • Yamazoe N & Shimanoe K, 1 - Fundamentals of semiconductor gas sensors, in: Jaaniso R & Tan O K (Eds), Semiconductor Gas Sensors, Woodhead Publishing, (2013) 34.
  • Masuda Y, Sens Actuators B: Chem, 364 (2022) 131876.
  • Yang Y, Maeng B, Jung D G, Lee J, Kim Y, Beom J, Kwon H, Kyung A & Daewoong J, J Nanomater, 12 (2022) 3227.
  • Aragón F F H, Aquino J C R, Ardisson J D & Coaquira J A H, J Mater Sci Semicond Process, 93 (2019) 182.
  • Pakiyaraj K & Kirthika V, J Nano Sci Technol, 7 (2021) 949. 24 Cynthia S R, Sivakumar R, Sanjeeviraja C, Gopalakrishnan C & Jeyadheepan K, J Appl Mater Sci, 217 (2020) 2000512.
  • Yuan W, Liu X, Fang Z, Ning H, Zhang X, Deng Y, Deng P, Liang Z, Yao R & J Peng, J Mol Cryst Liq Cryst, 676 (2018) 44.
  • Zhu S, Tian Q, Wu G, Bian W, Sun N, Wang X, Li C, Zhang Y, Dou H, Gong C, Dong X, Sun J, An Y, Jing Q & Liu B, Int J Hydrogen Energy, 47 (2022) 17821.
  • Drmosh Q A, Yamani Z H, Mohamedkhair A K, Hendi A H Y & Ibrahim A, J Vacuum, 156 (2018) 68.
  • Toan N V, Hung C M, Hoa N D, Duy N Van, Le D T T, Hoa N T T, Viet N N, Phuoc P H, Hieu N V, J Hazard Mater, 3894 (2021) 00144.
  • Li A, Zhao S, Bai J, Gao S, Wei D, Shen Y, Yuan Z & Meng F; J Sens Actuators: B. Chem, 355 (2022) 131261.
  • Abinaya M, Pal R & Sridharan M, J Solid State Sci, 95 (2019) 105928.
  • Musa A M M, Farhad S F U, Gafur M A & Jamil A T M K, J AIP Adv, 11 (2021) 115004.
  • Deepa S, Kumari K P & Thomas B, Ceram Int, 8842 (2017) 32063.
  • Sanger A, Kumar A, Kumar A, Jaiswal J, Chandra R, J Sens Actuators B: Chem, 236 (2016) 16.
  • Hu D, Han B, Han R, Deng S, Wang Y, Li Q, et al, J Chem, 38 (2014) 2443.
  • Kumar M, Mehta B R, Singh V N, Chatterjee R, Milikisiyants S, Lakshmi K V, et al., J Appl Phys Lett, 96 (2010) 123114.
  • Kumar V, Gautam Y K, Gautam D, Kumar A, Adalati R & Singh B P, J Fuels, 4 (2023) 279.
  • Paul R, Das B & Ghosh R, J Alloys Compd, 941 (2023) 168943.
  • Duy N V, Toanb T H, Hoa N D & Hieu N V, Int J Hydrogen Energy, 40 (2015) 12572.
  • Drmosh Q A & Yamani Z H, Appl Surf Sci, 375 (2016) 57.
  • Chomkitichai W, Ninsonthi H, Liewhiran C, Wisitsoraat A, Sriwichai S & Phanichphant S, J Nanomater, (2013).
  • Kamal T, J Alloy Comp, 729 (2017) 1058.
  • Chou P C, Chen H I, Liu I P, Chen C C, Liou J K, Hsu K S & Liu W C, Int J Hydrog Energy, 40 (2015) 729.
  • Yadav P, Kumar A, Sanger A, Gautam Y K & Singh B P, J Electron Mater, 50 (2021) 192.
  • Kadhim I H, Hassan H H & Abdullah Q N, J Nano-Micro Lett, 8 (2016) 20.
  • Kien N, Hung C M, Ngoc T M, Le D T T, Hoa N D, Duy N V & Hieu N, J Sens Actuators B Chem, 253 (2017) 156.
  • Godbole R, Ameen S, Nakate U T, Akhtar M S & Shin H S, J Mater Lett, 254 (2019) 398.
  • Duy N V, Thai N X, Ngoc T M, Le D T T, Hung C M, Nguyen H, Tonezzer M, Hieu N V & Hoa N D, J Sens Actuators: B Chem, 351 (2022) 130979.
  • Wang R H, Wen W, Zheng S, Ye Z & Wu J-M, Sens Actuators B: Chem, 362 (2022) 131805.
  • Alenezi M R, Alzanki T H, Almeshal A M, Alshammari A S, Beliatis M J, Henley S J, et al., RSC Adv, 5 (2015) 103195.
  • Zhang T, Liu L, Qi Q, Li S & Lu G, Sens Actuators B: Chem, 139 (2009) 287.

Abstract Views: 46

PDF Views: 36




  • Annealing-assisted SnO2 Thin Film for Selective Hydrogen Gas Sensor

Abstract Views: 46  |  PDF Views: 36

Authors

Vipin Kumar
Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University Campus Meerut, Uttar Pradesh 250 004, India
Yogendra K. Gautam
Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University Campus Meerut, Uttar Pradesh 250 004, India
Ravikant Adalati
Institute Instrumentation Centre, Indian Institute of Technology Roorkee, Uttrakhand 247 667, India
Ashwani Kumar
Department of Physics, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248 002, India
Beer Pal Singh
Smart Materials and Sensor Laboratory, Department of Physics, Chaudhary Charan Singh University Campus Meerut, Uttar Pradesh 250 004, India
Satyendra Kumar Mourya
Department of Electrical and Electronics Engineering, Birla Institute of Technology and Science Pilani, Pilani 333 031, Rajasthan, India
Harish Verma
Department of Physics, Indian Institute of Technology (B.H.U), Varanasi, Uttar Pradesh 221 005, India
Mukesh Jangir
School of Applied Sciences and technology, Chemistry Department, NIMS University, Jaipur, Rajasthan 303 121, India

Abstract


Today, monitoring and classification of hydrogen gas by metal oxide-based sensors are widely studying to improve their selectivity and stability. In present work, hydrogen sensing properties of magnetron sputtered deposited pure SnO2 thin films have been studied. The pure SnO2 thin film was deposited on glass substrate and as-deposited film was annealed at 450 °C for 6 hrs. The annealed SnO2 thin film has crystalline tetragonal structure, granular surface morphology and non-stoichiometry elemental composition of tin and oxygen vacancies. A higher gas sensing response is obtained for annealed SnO2 thin film as compare to as-deposited SnO2 thin film. A limit of detection (LOD) ~175 ppb is estimated for annealed SnO2 thin film based sensor. This sensor exhibits fast response and recovery time of 42 s/52 s for 50 and 500 ppm hydrogen gas, respectively. The sensor is found highly selective towards H2 gas in compare to different gases such as methane, carbon monoxide and nitrogen dioxide.

Keywords


Hydrogen; Gas sensors; SnO2 thin films; Sputtering; FE-SEM; Selectivity

References