Open Access Open Access  Restricted Access Subscription Access

Radon and Thoron Exhalation Rate Measurements in Soil Samples Collected from the Vicinity of a Thermal Power Plant


Affiliations
1 Department of Physics, S.V. College, Aligarh, Uttar Pradesh 202 001, India
 

Radon mass and thoron surface exhalation rate of soil samples collected from the surrounding area of Harduaganj thermal power plant (HTPP), Aligarh is measured using an active radon/thoron monitor (SMART RnDuo). The radon mass exhalation rate values range from 27±1 to 100±3 mBq kg−1 h−1 with a mean value of 63±17 mBq kg−1 h−1. The thoron surface exhalation rate values vary from 1.0 ± 0.2 to 10±1 kBq m−2h−1 with a mean value of 5.7 ± 2.2 kBq m−2h−1. The mean values of radon mass and thoron surface exhalation rate are found to be higher than the worldwide mean values.

Keywords

Soil samples; SMART RnDuo; Exhalation rates
User
Notifications
Font Size

  • Murphy E & King E A, Environmental noise pollution: Noise mapping, public health, and policy, Elsevier, (2022)
  • Soni A R, Makde K, Amrit K, Vijay R & Kumar R, Appl Acoust, 188 (2022) 108516.
  • Smith A, Nutt D, Wilson S, Rich N, Hayward S & Heatherley S, Noise and insomnia: a study of community noise exposure, sleep disturbance, noise sensitivity and subjective reports of health, Report to the UK Department of Health and Department of Environment, Transport and the Regions: Cardiff, Bristol, (2002).
  • Lan Y, Roberts H, Kwan M P & Helbich M, Environ Res, 191 (2020) 110118.
  • Thurston F E, Am J Ind Med, 56 (2013) 367.
  • Abbaspour M, Karimi E, Nassiri P, Monazzam M R & Taghavi L, Transport Res D: Transport Environ, 34 (2015) 95.
  • Mehdi M R, Kim M, Seong J C & Arsalan M H, Environ Int, 37 (2011) 97.
  • Hamad K, Khalil M A & Shanableh A, Transport Res D: Transport Environ, 53 (2017) 161.
  • Khan V & Biligiri K P, Int J Pavem Res Technol, 11 (2018) 253.
  • Hung W T, Ng C F, Wong W G, Law M M K, Ho K Y & Leung C K R, Development of CPX technique in measuring tyre/road noise in Hong Kong, In 38th International Congress and Exposition on Noise Control Engineering, (2009) 2576.
  • Geravandi S, Takdastan A, Zallaghi E, Niri M V, Mohammadi M J, Saki H & Naiemabadi, A, J Health Sci, 7 (2015).
  • Anees M M, Qasim M & Bashir A, J Earth Sci Pak, 1 (2017) 08.
  • Stansfeld S A & Matheson M P, Brit Med Bull, 68 (2003) 243.
  • Firdaus G & Ahmad A, Indoor Built Environ, 19 (2010) 648.
  • WHO, Deafness and hearing loss, (2018) https://www.who. int/news-room/fact-sheets/detail/deafness-and-hearing-loss.
  • EEA, The European environment state and outlook, European briefings – Noise, SOER, (2015) 1.
  • Tobías A, Recio A, Díaz J & Linares C, Environ Res, 137 (2015) 136.
  • Chopard F, Bloquet S, Faiget L, Aujard C & Thomas P, Proc Inter-Noise, (2007) 2857.
  • Czyzewski A, Kotus J & Szczodrak M, Noise Control Eng J, 60 (2012) 69.
  • Dublin City Council, Dublin City Council Ambient Sound Monitoring Network, Annual Report, Dublin, Ireland (2013).
  • Tiwari S K, Kumaraswamidhas L A & Garg N, Accuracy of Short-Term Noise Monitoring Strategy in Comparison to Long-Term Noise Monitoring Strategy, (2021).
  • Garg N, Singh B, Dhiman N K & Saini P K, Adv Sci Eng Med, 12 (2020) 1531.
  • Tiwari S K, Kumaraswamidhas L A, Gautam C & Garg N, Appl Acoust, 195 (2022) 108849.
  • Codur M Y, Atalay A & Unal A, Fresenius Environ Bull, 26 (2017) 4254.
  • Patil V K & Nagarale P P, Int J Bus Data Commun Network, 15 (2019) 92.
  • Garg N, Mangal S K, Saini P K, Dhiman P & Maji S, Acoust Aust, 43 (2015) 179.
  • Tiwari S K, Kumaraswamidhas L A & Garg N, Noise Control Eng J, 70 (2022) 456.
  • Sagar T V & Rao G N, J Environ Sci Eng, 48 (2006) 139.
  • Manojkumar N, Basha K, & Srimuruganandam B, Noise Map J, 6 (2019) 38.
  • Yadav M, Patel R K, Yadav A, Sharma G & Pandey G, Int J Eng Sci Technol, 13 (2021) 131.
  • Alam W, Int J Environ Sci, 2 (2011) 731.
  • Garg N, Chauhan B S & Singh M, Acoust Aust, 49 (2021) 23.
  • Ma G, Tian Y, Ju T, Ren Z, Environ Morit Asses, 123(2006) 413.
  • Nazaroff WW & Nero AV, Radon and its decay product in indoor, (John Wiley and Sons, New York), 1988.
  • Lubin J H, Wang Z Y, Boice J D, Xu Z Y, Bolt J W, De Wang L & Kleinerman A R, Int J Cancer, 109 (2004) 132.
  • Kerwski D, Lubin J H, Zielinski J M, Alavanja M, Catalan V S, Field R W, Klotz J B, Letourneau E G, Schoenberg J B, Steck D J, Stolwijk J N, Weinberg C & Wilcox H B, Epidemiology, 16 (2005) 137.
  • Darby S C, Hill D, Deo H, Auvinen A, Barros-Dios J M, Baysson H, Bochicchio F, Falk R, Farchi S, Figueiras A, Hakama M, Heid I, Hunter N, Kreienbrock L, Kreuzer M, Lagarde F, Makelainen I, Muirhead C, Oberaigner W, Pershagen G, Ruosteenoja E, Rosario AS, Tirmarche M, Tomasek L, Whitely E, Wichmann H E & Doll R, Scand J Work Environ Health, 32 (2006) 1.
  • UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiation: Sources and effects ionizing radiation: Report to the General Assembly with Scientific Annexes, Annex B: Exposure from natural sources of radiation, United Nations, New York, 2000.
  • Ishimori Y, Lange K & Martin P, Technical reports series no. 474, International Atomic energy Agency, Vienna, 2013.
  • Sun K, Guo Q & Zhuo W, J Nucl Sci Technol, 41 (2004) 86.
  • Nero A V, Gadgil A J, Nazaroff W W & Revzan K L, Technical Report, U.S. Department of Energy, Office of Health and Environmental Research Washington, D C, 20545 (1990).
  • Hutter A R, Environ Int J, 22 (1996) 455.
  • Khan M S, Srivastava D S & Azam A, Environ Earth Sci, 67 (2012) 1363.
  • Sharma S, Kumar A, Mehra R & Mishra R, J Soils Sediments, 19 (2019) 1441.
  • Gaware J J, Sahoo B K, Sapra B K & Mayya Y S, BARC News Lett, 318 (2011) 45.
  • Sahoo B K, Sapra B K, Kanse S D, Gaware J J & Mayya Y S, Radiat Meas, 58 (2013) 52.
  • Sahoo B K, Agarwal T K, Gaware J J & Sapra B K, J Radioanal Nucl Chem, 302 (2014) 1417.
  • Prajith R, Rout R P, Kumbhar D, Mishra R, Sahoo B K & Sapra B K, Environ Earth Sci, 78 (2019) 35.

Abstract Views: 28

PDF Views: 22




  • Radon and Thoron Exhalation Rate Measurements in Soil Samples Collected from the Vicinity of a Thermal Power Plant

Abstract Views: 28  |  PDF Views: 22

Authors

Pankaj Kumar
Department of Physics, S.V. College, Aligarh, Uttar Pradesh 202 001, India
Mukesh Kumar
Department of Physics, S.V. College, Aligarh, Uttar Pradesh 202 001, India

Abstract


Radon mass and thoron surface exhalation rate of soil samples collected from the surrounding area of Harduaganj thermal power plant (HTPP), Aligarh is measured using an active radon/thoron monitor (SMART RnDuo). The radon mass exhalation rate values range from 27±1 to 100±3 mBq kg−1 h−1 with a mean value of 63±17 mBq kg−1 h−1. The thoron surface exhalation rate values vary from 1.0 ± 0.2 to 10±1 kBq m−2h−1 with a mean value of 5.7 ± 2.2 kBq m−2h−1. The mean values of radon mass and thoron surface exhalation rate are found to be higher than the worldwide mean values.

Keywords


Soil samples; SMART RnDuo; Exhalation rates

References