Open Access Open Access  Restricted Access Subscription Access

Low Temperature Loss Measurement of Aluminium Thin Film Transmission Lines


Affiliations
1 CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi 110 012, India
 

In this article, we study the planar microwave structures made from Aluminium thin films deposited by the sputtering technique at low temperature. The loss mechanisms in these Aluminium transmission lines deposited on Silicon substrates have been analysed by considering the stopping distance in the conducting lines. It is shown that the attenuation of the lines depends on the material properties and edge shape of the transmission lines. The two-port microwave transmission measurement of the structures was performed with a vector network analyser in the 1-12 GHz frequency range using a cryostat system. This work presents that Aluminium can be a potential candidate for various applications, namely MKIDS, and can replace other conventional superconductors for low temperature applications. Additionally, stopping distance analysis in silicon substrate-based microstrip lines can be continued in order to analyse the precise losses due to the step edge fabrication of the transmission lines. This analysis can then be used to estimate the uncertainty in the loss measurement. This work will be beneficial for developing the transmission lines for a variety of cutting-edge technologies, including quantum computing, the Internet of Things, and high-speed communication systems, where loss parameters play a crucial role.

Keywords

Planar microwave structures; Transmission lines; Stopping distance; Low temperature; Vector network analyser; Loss measurement.
User
Notifications
Font Size

  • Dehe A, Klingbeil H, Weil C & Hartnagel G L, IEEE Microw Guided Wave Lett, 8 (1998) 185.
  • Ponchak G E, Matloubian M & Katehi L P B, IEEE Trans Microw Theory Tech, 47 (1999) 241.
  • Rastogi A K & Mishra S, Int J Infrared Millim Waves, 20 (1999) 505.
  • Zychowicz T, Krupka J & Mazierska J, Proc APMC, (2006) 572.
  • Sun X, Proc Int Conf Microwave Millim Wave Tech, (2008) 624.
  • Gopinath A, IEEE Trans Microw Theory Tech, 30 (1982) 1101.
  • Schollhorn C, Zhao W, Morschbach M & Kasper E, IEEE Trans Electron Devices, 50 (2003) 740.
  • Ramey R L & Lewis T S, J Appl Phys, 39 (1968) 1747.
  • Heinrich W, IEEE Trans Microwave Theory Tech, 41 (1993) 45.
  • Ke J Y & Chen C H, IEEE Trans Microwave Theory Tech, 43 (1995) 1128.
  • Kitazawa T & Itoh T, IEEE Trans Microwave Theory Tech, 39 (1991) 1694.
  • Heinrich W, IEEE Trans Microwave Theory Tech, 38 (1990) 1468.
  • Verma A K, Nasimuddin & Singh H, Proceedings of APMC, China, 2004.
  • Holloway C L & Kuester E F, Radio Sci, 29 (1995) 539.
  • Holloway C L & Kuester E F, IEEE Trans Microwave Theory Tech, 43 (1995) 2695.
  • Holloway C L, Microwave Opt Tech Lett, 25 (2000) 162. 17 Ponchak G E, Matloubian M & Katehi L P B, Int J Microcircuits Elect Pack, 20 (1997) 167.
  • Cicak K, Li D, Strong J A, Allman M S, Altomare F, Sirois A J, Whittaker J D, Teufel J D & Simmonds R W, Appl Phys Lett, 96 (2009).
  • Gu X, Kockum A F, Miranowicz A, Liu Y X & Nori F, Phys Rep, 718 (2017) 1.
  • Kautz R L, J Appl Phys, 49 (1978) 308.
  • Matick R E, Lines for Digital and Communication Networks, IEEE Press, 1995.
  • Ekholm E B & McKnight S W, IEEE Trans Microw Theory Tech, 38 (1990) 387.
  • Anacker W, IBM J Res Develop, 24 (1980) 107.
  • Bromme R & Jansen R H, IEEE MTT-S Int Microwave Symp Dig, 3 (1991) 1081.
  • Dib N I, Harokopus W P J, Katehi L P B, Ling C C & Rebeiz G M, IEEE MTT-S Int Microwave Symp Dig, 2 (1991) 623.
  • Booth J C & Holloway C L, IEEE Trans Microwave Theory Tech, 47 (1999) 769.
  • Shen Z Y, High-Temperature Superconducting Microwave Circuits. Norwood, MA: Artech House, (1994) 103.
  • Kamenov P, Superconducting quantum circuits based on disordered aluminum films, Ph D Thesis, The State University of New Jersey, 2023.
  • Moshe A G, Farber E & Deutscher G, Appl PhyS Lett, 6 (2020).
  • Göppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J M, Leek P J, Puebla G, Steffen L & Wallraff A, J Appl PhyS, 104 (2008) 113904.
  • Barends R, Vercruyssen N, Endo A, Visser P D, Zijlstra T, Klapwijk T, Diener P, Yates S & Baselmans J, Appl Phys Lett, 97 (2010) 023508
  • Wallraff A, Schuster D, Blais A, Frunzio L, Huang R, Majer J, Kumar S, Girvin S, & Schoelkopf R, Nature (London) , 431 (2004) 162.
  • Frunzio L, Wallraff A, Schuster D, Majer J & Schoelkopf R, IEEE Trans Appl Supercond, 15 (2005) 860.
  • Krupka J, Breeze J, Centeno A, Alford N, Claussen T & Jensen L, IEEE Trans Microwave Theory Tech, 54 (2006) 3995.
  • Okasha S & Harada Y, Int Forum Green Asia, (2020) 27.
  • Siddiqi I, Verevkin A, Prober D E, Skalare A, Karasik B S, McGrath W R, Echternach P & LeDuc H G, IEEE Trans Appl Supercond, 11 (2001) 958.
  • Yanniello B, Aluminum-The other conductor, (Eaton), 2006.
  • Meulenbroeks D, Aluminum versus copper conductors, A white paper issued by Siemens, (Siemens AG) 2014.
  • Pryor L, A comparison of aluminum versus copper as used in electrical equipment, A white paper issued by GE.
  • Schöllhorn C, Zhao W, Morschbach M & Kasper E, IEEE Trans Electron Dev, 50 (2003) 740.
  • Queffelec P, Gelin P, Gieraltowski J & Loaec J, IEEE Trans Magn, 30 (1994) 224.
  • Patel S M, Kalra Y, V N Ojha V N & Sinha R K, Indian J Pure Appl Phys, 56 (2018) 959.
  • Eisenstadt W R & Eo Y, IEEE Trans Comp Hybrids Manuf Tech, 15 (1992) 483.

Abstract Views: 85

PDF Views: 53




  • Low Temperature Loss Measurement of Aluminium Thin Film Transmission Lines

Abstract Views: 85  |  PDF Views: 53

Authors

Pooja Singh
CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi 110 012, India
Sandhya M. Patel
CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi 110 012, India
P. K. Siwach
CSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi 110 012, India

Abstract


In this article, we study the planar microwave structures made from Aluminium thin films deposited by the sputtering technique at low temperature. The loss mechanisms in these Aluminium transmission lines deposited on Silicon substrates have been analysed by considering the stopping distance in the conducting lines. It is shown that the attenuation of the lines depends on the material properties and edge shape of the transmission lines. The two-port microwave transmission measurement of the structures was performed with a vector network analyser in the 1-12 GHz frequency range using a cryostat system. This work presents that Aluminium can be a potential candidate for various applications, namely MKIDS, and can replace other conventional superconductors for low temperature applications. Additionally, stopping distance analysis in silicon substrate-based microstrip lines can be continued in order to analyse the precise losses due to the step edge fabrication of the transmission lines. This analysis can then be used to estimate the uncertainty in the loss measurement. This work will be beneficial for developing the transmission lines for a variety of cutting-edge technologies, including quantum computing, the Internet of Things, and high-speed communication systems, where loss parameters play a crucial role.

Keywords


Planar microwave structures; Transmission lines; Stopping distance; Low temperature; Vector network analyser; Loss measurement.

References